• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zhu, Shijin
    Zhang, Jie
    Ma, Junjun
    Zhang, Yuxin
    Yao, Kexin
    KAUST Department
    Advanced Membranes and Porous Materials Research Center
    Date
    2015-03
    Permanent link to this record
    http://hdl.handle.net/10754/564079
    
    Metadata
    Show full item record
    Abstract
    Coaxial mesoporous MnO2/amorphous-carbon nanotubes have been synthesized via a facile and cost-effective strategy at room temperature. The coaxial double nanotubes of inner (outer) MnO2 and outer (inner) amorphous carbon can be obtained via fine tuning the preparative factors (e.g., deposition order and processing temperature). Furthermore, the electrochemical properties of the coaxial nanotubes were evaluated by cycle voltammetric (CV) and galvanostatic charge-discharge (GC) measurements. The as-prepared coaxial double nanotubes of outer MnO2 and inner amorphous carbon exhibit the optimized pseudocapacitance performance (362 F g-1) with good cycling stability, and ideal rate capability owning to the unique nanostructures. When assembled into two-electrode asymmetric supercapacitor, an energy density of 22.56 W h kg-1 at a power density of 224.9 W kg-1 is obtained. These findings provide a new and facile approach to fabricate high-performance electrode for supercapacitors.
    Citation
    Zhu, S. J., Zhang, J., Ma, J. J., Zhang, Y. X., & Yao, K. X. (2015). Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors. Journal of Power Sources, 278, 555–561. doi:10.1016/j.jpowsour.2014.12.054
    Sponsors
    The authors gratefully acknowledge the financial supports provided by National Natural Science Foundation of China (Grant no. 51104194 and 51104121), National Key laboratory of Fundamental Science of Micro/Nano-device and System Technology (2013MS06, Chongqing University), State Education Ministry and Fundamental Research Funds for the Central Universities (Project no. CDJZR14135501 and CDJZR13130035, Chongqing University, PR China). The authors acknowledge support on materials characterization by Dr. Gang Li in Northwest Institute for Nonferrous Metal Research, Xi'an 710016, PR China.
    Publisher
    Elsevier BV
    Journal
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2014.12.054
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jpowsour.2014.12.054
    Scopus Count
    Collections
    Articles; Advanced Membranes and Porous Materials Research Center

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.