• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ahmed, Ahfaz cc
    Goteng, Gokop
    Shankar, Vijai cc
    Al-Qurashi, Khalid
    Roberts, William L. cc
    Sarathy, Mani cc
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    high-pressure combustion (HPC) Research Group
    Date
    2015-03
    Permanent link to this record
    http://hdl.handle.net/10754/564073
    
    Metadata
    Show full item record
    Abstract
    Gasoline is the most widely used fuel for light duty automobile transportation, but its molecular complexity makes it intractable to experimentally and computationally study the fundamental combustion properties. Therefore, surrogate fuels with a simpler molecular composition that represent real fuel behavior in one or more aspects are needed to enable repeatable experimental and computational combustion investigations. This study presents a novel computational methodology for formulating surrogates for FACE (fuels for advanced combustion engines) gasolines A and C by combining regression modeling with physical and chemical kinetics simulations. The computational methodology integrates simulation tools executed across different software platforms. Initially, the palette of surrogate species and carbon types for the target fuels were determined from a detailed hydrocarbon analysis (DHA). A regression algorithm implemented in MATLAB was linked to REFPROP for simulation of distillation curves and calculation of physical properties of surrogate compositions. The MATLAB code generates a surrogate composition at each iteration, which is then used to automatically generate CHEMKIN input files that are submitted to homogeneous batch reactor simulations for prediction of research octane number (RON). The regression algorithm determines the optimal surrogate composition to match the fuel properties of FACE A and C gasoline, specifically hydrogen/carbon (H/C) ratio, density, distillation characteristics, carbon types, and RON. The optimal surrogate fuel compositions obtained using the present computational approach was compared to the real fuel properties, as well as with surrogate compositions available in the literature. Experiments were conducted within a Cooperative Fuels Research (CFR) engine operating under controlled autoignition (CAI) mode to compare the formulated surrogates against the real fuels. Carbon monoxide measurements indicated that the proposed surrogates accurately reproduced the global reactivity of the real fuels across various combustion regimes.
    Citation
    Ahmed, A., Goteng, G., Shankar, V. S. B., Al-Qurashi, K., Roberts, W. L., & Sarathy, S. M. (2015). A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties. Fuel, 143, 290–300. doi:10.1016/j.fuel.2014.11.022
    Sponsors
    The authors acknowledge Dr. Marcia Huber at NIST Boulder Colorado, USA for her comments and suggestions regarding the ADC simulations. The authors thank Mr. Adrian I. Ichim from the KAUST CCRC for preparing the engine test cell. The authors acknowledge funding support from the Clean Combustion Research Center and from Saudi Aramco under the FUELCOM program.
    Publisher
    Elsevier BV
    Journal
    Fuel
    DOI
    10.1016/j.fuel.2014.11.022
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.fuel.2014.11.022
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.