• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    A unified form of exact-MSR codes via product-matrix frameworks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Lin, Sian Jheng cc
    Chung, Weiho
    Han, Yunghsiangsam
    Al-Naffouri, Tareq Y. cc
    KAUST Department
    Computer Science Program
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Date
    2015-02
    Permanent link to this record
    http://hdl.handle.net/10754/564035
    
    Metadata
    Show full item record
    Abstract
    Regenerating codes represent a class of block codes applicable for distributed storage systems. The [n, k, d] regenerating code has data recovery capability while possessing arbitrary k out of n code fragments, and supports the capability for code fragment regeneration through the use of other arbitrary d fragments, for k ≤ d ≤ n - 1. Minimum storage regenerating (MSR) codes are a subset of regenerating codes containing the minimal size of each code fragment. The first explicit construction of MSR codes that can perform exact regeneration (named exact-MSR codes) for d ≥ 2k - 2 has been presented via a product-matrix framework. This paper addresses some of the practical issues on the construction of exact-MSR codes. The major contributions of this paper include as follows. A new product-matrix framework is proposed to directly include all feasible exact-MSR codes for d ≥ 2k - 2. The mechanism for a systematic version of exact-MSR code is proposed to minimize the computational complexities for the process of message-symbol remapping. Two practical forms of encoding matrices are presented to reduce the size of the finite field.
    Sponsors
    This work was supported by the Ministry of Science and Technology, Taiwan, under Grants NSC 102-2221-E-001-006-MY2, MOST 103-3113-E-110-002, and NSC 101-2221-E-011-069-MY3. Part of this work was presented at the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2013).
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    IEEE Transactions on Information Theory
    DOI
    10.1109/TIT.2014.2378255
    ae974a485f413a2113503eed53cd6c53
    10.1109/TIT.2014.2378255
    Scopus Count
    Collections
    Articles; Computer Science Program; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.