Show simple item record

dc.contributor.authorAshraf, Raja Shahid
dc.contributor.authorMeager, Iain
dc.contributor.authorNikolka, Mark
dc.contributor.authorKirkus, Mindaugas
dc.contributor.authorPlanells, Miquel
dc.contributor.authorSchroeder, Bob C.
dc.contributor.authorHolliday, Sarah
dc.contributor.authorHurhangee, Michael
dc.contributor.authorNielsen, Christian Bergenstof
dc.contributor.authorSirringhaus, Henning
dc.contributor.authorMcCulloch, Iain
dc.date.accessioned2015-08-03T12:28:50Z
dc.date.available2015-08-03T12:28:50Z
dc.date.issued2015-01-28
dc.identifier.issn00027863
dc.identifier.doi10.1021/ja511984q
dc.identifier.urihttp://hdl.handle.net/10754/564023
dc.description.abstractThe design, synthesis, and characterization of a series of diketopyrrolopyrrole-based copolymers with different chalcogenophene comonomers (thiophene, selenophene, and tellurophene) for use in field-effect transistors and organic photovoltaic devices are reported. The effect of the heteroatom substitution on the optical, electrochemical, and photovoltaic properties and charge carrier mobilities of these polymers is discussed. The results indicate that by increasing the size of the chalcogen atom (S < Se < Te), polymer band gaps are narrowed mainly due to LUMO energy level stabilization. In addition, the larger heteroatomic size also increases intermolecular heteroatom-heteroatom interactions facilitating the formation of polymer aggregates leading to enhanced field-effect mobilities of 1.6 cm2/(V s). Bulk heterojunction solar cells based on the chalcogenophene polymer series blended with fullerene derivatives show good photovoltaic properties, with power conversion efficiencies ranging from 7.1-8.8%. A high photoresponse in the near-infrared (NIR) region with excellent photocurrents above 20 mA cm-2 was achieved for all polymers, making these highly efficient low band gap polymers promising candidates for use in tandem solar cells. (Graph Presented).
dc.description.sponsorshipThis work was carried out primarily with funding and supports from the X10D Project (EC 287818) and The Leventis Foundation with support from EPSRC (EP/G037515/1 and EP/L016702/1). M.K. acknowledges support from Nano-matcell Project (EU 308997), and M.P. acknowledges support from the Artesun Project (EU 604397).
dc.publisherAmerican Chemical Society (ACS)
dc.titleChalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells
dc.typeArticle
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.contributor.departmentChemical Science Program
dc.contributor.departmentKAUST Solar Center (KSC)
dc.identifier.journalJournal of the American Chemical Society
dc.contributor.institutionDepartment of Chemistry and Centre for Plastic Electronics, Imperial College LondonLondon, United Kingdom
dc.contributor.institutionCavendish Laboratory, University of CambridgeCambridge, United Kingdom
kaust.personMcCulloch, Iain


This item appears in the following Collection(s)

Show simple item record