Show simple item record

dc.contributor.authorStevens, Loah A.
dc.contributor.authorGoetz, Katelyn P.
dc.contributor.authorFonari, Alexandr
dc.contributor.authorShu, Ying
dc.contributor.authorWilliamson, Rachel M.
dc.contributor.authorBredas, Jean-Luc
dc.contributor.authorCoropceanu, Veaceslav P.
dc.contributor.authorJurchescu, Oana D.
dc.contributor.authorCollis, Gavin E.
dc.date.accessioned2015-08-03T12:22:48Z
dc.date.available2015-08-03T12:22:48Z
dc.date.issued2015-01-02
dc.identifier.issn08974756
dc.identifier.doi10.1021/cm503439r
dc.identifier.urihttp://hdl.handle.net/10754/564006
dc.description.abstractWe report a novel synthesis to ultra high purity 7,14-bis((trimethylsilyl)ethynyl)dibenzo[b,def]-chrysene (TMS-DBC) and the use of this material in the growth of single crystals by solution and vapor deposition techniques. We observe that the substrate temperature has a dramatic impact on the crystal growth, producing two distinct polymorphs of TMS-DBC; low temperature (LT) fine red needles and high temperature (HT) large yellow platelets. Single crystal X-ray crystallography confirms packing structures where the LT crystals form a 1D slipped-stack structure, while the HT crystals adopt a 2D brickwork motif. These polymorphs also represent a rare example where both are extremely stable and do not interconvert to the other crystal structure upon solvent or thermal annealing. Single crystal organic field-effect transistors of the LT and HT crystals show that the HT 2D brickwork motif produces hole mobilities as high as 2.1 cm2 V-1 s-1, while the mobility of the 1D structure is significantly lower, at 0.028 cm2 V-1 s-1. Electronic-structure calculations indicate that the superior charge transport in the brickwork polymorph in comparison to the slipped-stack polymorph is due to the presence of an increased dimensionality of the charge migration pathways.
dc.description.sponsorshipThis work was supported by the Flexible Electronics Theme and is part of the CSIRO Future Manufacturing Flagship. We acknowledge financial support from the CSIRO Office of the Chief Executive program for Y.S. and G.C. Work at WFU was supported by the National Science Foundation, under Grant ECCS 1254757 and GRFP DGE-0907738. The work at Georgia Tech was supported in part by the National Science Foundation under Award No. DMR-1105147. Data for X-ray structure determination were collected on the MX2 beamline at the Australian Synchrotron, Victoria, Australia.
dc.publisherAmerican Chemical Society (ACS)
dc.titleTemperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport
dc.typeArticle
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentLaboratory for Computational and Theoretical Chemistry of Advanced Materials
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalChemistry of Materials
dc.contributor.institutionDepartment of Physics, Wake Forest UniversityWinston-Salem, NC, United States
dc.contributor.institutionSchool of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Institute of TechnologyAtlanta, GA, United States
dc.contributor.institutionCSIRO Manufacturing Flagship, Clayton South MDC, Private Bag 10VIC, Australia
dc.contributor.institutionMX Beamlines, Australian Synchrotron, 800 Blackburn RoadClayton, VIC, Australia
kaust.personBredas, Jean-Luc
dc.relation.issupplementedbyDOI:10.5517/cc1370y9
display.relations<b> Is Supplemented By:</b> <br/> <ul><li><i>[Dataset]</i> <br/> Stevens, L. A., Goertz, K. P., Fonari, A., Shu, Y., Williamson, R. M., Bredas, J.-L., … Collis, G. E. (2015). CCDC 1019650: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc1370y9. DOI: <a href="https://doi.org/10.5517/cc1370y9">10.5517/cc1370y9</a> HANDLE: <a href="http://hdl.handle.net/10754/624359">10754/624359</a></li></ul>
dc.date.published-online2015-01-02
dc.date.published-print2015-01-13


This item appears in the following Collection(s)

Show simple item record