Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush
Type
ArticleAuthors
Morrison, Brett M.Tsingalia, Akivaga
Vidensky, Svetlana
Lee, Youngjin
Jin, Lin
Farah, Mohamed H.
Lengacher, Sylvain
Magistretti, Pierre J.

Pellerin, Luc
Rothsteinb, Jeffrey D.
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionBioscience Program
Date
2014-10-29Embargo End Date
2015-10-29Permanent link to this record
http://hdl.handle.net/10754/563985
Metadata
Show full item recordAbstract
Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21. days in wild-type mice to greater than 38. days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote mice have no recovery of CMAP at 42. days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42. days post-crush in the MCT1 heterozygote mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote mice at 4. weeks and tibial mixed sensory and motor nerve at 3. weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.Citation
Morrison, B. M., Tsingalia, A., Vidensky, S., Lee, Y., Jin, L., Farah, M. H., … Rothstein, J. D. (2015). Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush. Experimental Neurology, 263, 325–338. doi:10.1016/j.expneurol.2014.10.018Sponsors
The authors would like to thank Dr. Rita Sattler for her helpful comments on the manuscript, Dr. Dwight Bergles for supplying the PLP-GFP transgenic reporter mice, Ms. Katelyn Russell for assistance with electrodiagnostic studies, and Carol Cooke and the Johns Hopkins Neurology Electron Microscopy Core for their assistance in processing, photographing, and analyzing electron microscopic images. Financial support was provided by the Muscular Dystrophy Association (B.M.M.), NIH NS33958 (J.D.R.), and the Packard Center for ALS (J.D.R).Publisher
Elsevier BVJournal
Experimental NeurologyPubMed ID
25447940PubMed Central ID
PMC4292924Additional Links
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292924http://europepmc.org/articles/pmc4292924?pdf=render
ae974a485f413a2113503eed53cd6c53
10.1016/j.expneurol.2014.10.018
Scopus Count
Related articles
- Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy.
- Authors: Jha MK, Ament XH, Yang F, Liu Y, Polydefkis MJ, Pellerin L, Morrison BM
- Issue date: 2020 Nov
- Na<sup>+</sup> /K<sup>+</sup> -ATPase coupled to endothelin receptor type B stimulates peripheral nerve regeneration via lactate signalling.
- Authors: Tu NH, Katano T, Matsumura S, Funatsu N, Pham VM, Fujisawa JI, Ito S
- Issue date: 2017 Sep
- Differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.
- Authors: Tong LL, Ding YQ, Jing HB, Li XY, Qi JG
- Issue date: 2015 May 6
- Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice.
- Authors: Jha MK, Passero JV, Rawat A, Ament XH, Yang F, Vidensky S, Collins SL, Horton MR, Hoke A, Rutter GA, Latremoliere A, Rothstein JD, Morrison BM
- Issue date: 2021 Nov 1
- Applications of Proteomics to Nerve Regeneration Research
- Authors: Massing MW, Robinson GA, Marx CE, Alzate O, Madison RD, Alzate O
- Issue date: 2010