• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Yan, Yan
    Keyes, David E. cc
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Applied Mathematics and Computational Science Program
    Extreme Computing Research Center
    Date
    2015-01
    Permanent link to this record
    http://hdl.handle.net/10754/563979
    
    Metadata
    Show full item record
    Abstract
    We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial control profiles far from optimal and require the numerical continuation technique applied on regularization parameters. We believe our solution strategy is general and can be applied to other large-scale optimal control problems which involve multiphysics processes and require smooth approximations to the optimal control profile.
    Citation
    Yan, Y., & Keyes, D. E. (2015). Smooth and robust solutions for Dirichlet boundary control of fluid–solid conjugate heat transfer problems. Journal of Computational Physics, 281, 759–786. doi:10.1016/j.jcp.2014.10.049
    Sponsors
    The authors gratefully acknowledge awards DE-FG07-07ID14889 and DE-FC02-06ER25783 from the U.S. Department of Energy (DOE) for part of the research, access to computing resources at the New York Center for Computational Sciences at Stony Brook University/Brookhaven National Laboratory supported by the U.S. DOE under Contract DE-AC02-98CH10886 and by the State of New York, and access to resources of the National Energy Research Scientific Computing Center supported by the Office of Science of the U.S. DOE under Contract DE-AC02-05CH11231.
    Publisher
    Elsevier BV
    Journal
    Journal of Computational Physics
    DOI
    10.1016/j.jcp.2014.10.049
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jcp.2014.10.049
    Scopus Count
    Collections
    Articles; Applied Mathematics and Computational Science Program; Extreme Computing Research Center; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.