• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Jing, Wei
    Roberts, William L. cc
    Fang, Tiegang
    KAUST Department
    Clean Combustion Research Center
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    high-pressure combustion (HPC) Research Group
    Date
    2015-01
    Permanent link to this record
    http://hdl.handle.net/10754/563975
    
    Metadata
    Show full item record
    Abstract
    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the wider region of OH∗ in the downstream locations where only OH∗ emission is observed. The intensity of OH∗ is higher for Jet-A than diesel under low O2 concentration but lower under high O2 concentration. The intensity of NL is higher for Jet-A for all the conditions investigated. However, the intensities of Band A and Band B are lower for Jet-A for all these conditions. Based on the imaging of multiple-band flame emissions, the spray flame structures were further analyzed for the two fuels under both low temperature and conventional combustion modes. Conceptual flame structures were proposed to complement the previous conceptual models for spray combustion under different combustion modes.
    Citation
    Jing, W., Roberts, W. L., & Fang, T. (2015). Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber. Energy Conversion and Management, 89, 525–540. doi:10.1016/j.enconman.2014.10.010
    Sponsors
    This material is based upon work supported by, or in part by, the Natural Science Foundation under Grant No. CBET-0854174, and the U.S. Army Research Laboratory and the U.S. Army Research Office under grant - W911NF-10-1-0118. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies.
    Publisher
    Elsevier BV
    Journal
    Energy Conversion and Management
    DOI
    10.1016/j.enconman.2014.10.010
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.enconman.2014.10.010
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.