Show simple item record

dc.contributor.authorLiu, Xin
dc.contributor.authorDuan, Ting
dc.contributor.authorMeng, Changgong
dc.contributor.authorHan, Yu
dc.date.accessioned2015-08-03T12:20:12Z
dc.date.available2015-08-03T12:20:12Z
dc.date.issued2015
dc.identifier.issn20462069
dc.identifier.doi10.1039/c4ra14482a
dc.identifier.urihttp://hdl.handle.net/10754/563938
dc.description.abstractTaking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity of both a single Pt atom and a boron vacancy defect (PtBV), the Pt-N interaction is -4.40 eV and is already strong enough to prohibit the diffusion and aggregation of the stabilized Pt atom. Facilitated by the upshifted Pt-d states originated from the Pt-N interaction, the barriers for CO oxidation through the Langmuir-Hinshelwood mechanism for formation and dissociation of peroxide-like intermediate and the regeneration are as low as 0.38, 0.10 and 0.04 eV, respectively, suggesting the superiority of PtBV as a catalyst for low temperature CO oxidation.
dc.description.sponsorshipThis work was supported by NSFC (21373036, 21103015, 21271037 and 11174045), the Fundamental Research Funds for the Central Universities (DUT12LK14 and DUT14LK09), the Key Laboratory of Coastal Zone Environmental Processes YICCAS (201203), the Key Science and Technology International Cooperation Foundation of Hainan Province, China (KJHZ2014-08) and the Special Academic Partner GCR Program from King Abdullah University of Science and Technology. Y. H would also thank Dalian University of Technology for the Seasky Professorship.
dc.publisherRoyal Society of Chemistry (RSC)
dc.titlePt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.contributor.departmentChemical Science Program
dc.contributor.departmentNanostructured Functional Materials (NFM) laboratory
dc.identifier.journalRSC Adv.
dc.contributor.institutionSchool of Chemistry, Dalian University of TechnologyDalian, China
kaust.personHan, Yu


This item appears in the following Collection(s)

Show simple item record