Show simple item record

dc.contributor.authorRoesle, Philipp
dc.contributor.authorCaporaso, Lucia
dc.contributor.authorSchnitte, Manuel
dc.contributor.authorGoldbach, Verena
dc.contributor.authorCavallo, Luigi
dc.contributor.authorMecking, Stefan
dc.date.accessioned2015-08-03T12:19:15Z
dc.date.available2015-08-03T12:19:15Z
dc.date.issued2014-11-21
dc.identifier.citationRoesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2014). A Comprehensive Mechanistic Picture of the Isomerizing Alkoxycarbonylation of Plant Oils. Journal of the American Chemical Society, 136(48), 16871–16881. doi:10.1021/ja508447d
dc.identifier.issn00027863
dc.identifier.doi10.1021/ja508447d
dc.identifier.urihttp://hdl.handle.net/10754/563911
dc.description.abstractTheoretical studies on the overall catalytic cycle of isomerizing alkoxycarbonylation reveal the steric congestion around the diphosphine coordinated Pd-center as decisive for selectivity and productivity. The energy profile of isomerization is flat with diphosphines of variable steric bulk, but the preference for the formation of the linear Pd-alkyl species is more pronounced with sterically demanding diphosphines. CO insertion is feasible and reversible for all Pd-alkyl species studied and only little affected by the diphosphine. The overall rate-limiting step associated with the highest energetic barrier is methanolysis of the Pd-acyl species. Considering methanolysis of the linear Pd-acyl species, whose energetic barrier is lowest within all the Pd-acyl species studied, the barrier is calculated to be lower for more congesting diphosphines. Calculations indicate that energy differences of methanolysis of the linear versus branched Pd-acyls are more pronounced for more bulky diphosphines, due to involvement of different numbers of methanol molecules in the transition state. Experimental studies under pressure reactor conditions showed a faster conversion of shorter chain olefin substrates, but virtually no effect of the double bond position within the substrate. Compared to higher olefins, ethylene carbonylation under identical conditions is much faster, likely due not just to the occurrence of reactive linear acyls exclusively but also to an intrinsically favorable insertion reactivity of the olefin. The alcoholysis reaction is slowed down for higher alcohols, evidenced by pressure reactor and NMR studies. Multiple unsaturated fatty acids were observed to form a terminal Pd-allyl species upon reaction with the catalytically active Pd-hydride species. This process and further carbonylation are slow compared to isomerizing methoxycarbonylation of monounsaturated fatty acids, but selective.
dc.description.sponsorshipP.R. gratefully acknowledges support from the Carl-Zeiss-Foundation by a graduate fellowship. We thank Dako AG for donation of high-oleic sunflower oils.
dc.publisherAmerican Chemical Society (ACS)
dc.titleA comprehensive mechanistic picture of the isomerizing alkoxycarbonylation of plant oils
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentChemical Science Program
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalJournal of the American Chemical Society
dc.contributor.institutionDepartment of Chemistry, University of KonstanzKonstanz, Germany
dc.contributor.institutionDepartment of Chemistry, University of Salerno, Via Giovanni Paolo IIFisciano, SA, Italy
kaust.personCavallo, Luigi
dc.relation.issupplementedbyDOI:10.5517/cc12xbs3
dc.relation.issupplementedbyDOI:10.5517/cc12xbt4
dc.relation.issupplementedbyDOI:10.5517/cc12xbv5
dc.relation.issupplementedbyDOI:10.5517/cc12xbw6
dc.relation.issupplementedbyDOI:10.5517/cc12xbx7
dc.relation.issupplementedbyDOI:10.5517/cc12xby8
dc.relation.issupplementedbyDOI:10.5517/cc12xbz9
display.relations<b> Is Supplemented By:</b> <br/> <ul><li><i>[Dataset]</i> <br/> Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010345: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbs3. DOI: <a href="https://doi.org/10.5517/cc12xbs3">10.5517/cc12xbs3</a> HANDLE: <a href="http://hdl.handle.net/10754/624344">10754/624344</a></li><li><i>[Dataset]</i> <br/> Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010346: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbt4. DOI: <a href="https://doi.org/10.5517/cc12xbt4">10.5517/cc12xbt4</a> HANDLE: <a href="http://hdl.handle.net/10754/624345">10754/624345</a></li><li><i>[Dataset]</i> <br/> Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010347: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbv5. DOI: <a href="https://doi.org/10.5517/cc12xbv5">10.5517/cc12xbv5</a> HANDLE: <a href="http://hdl.handle.net/10754/624346">10754/624346</a></li><li><i>[Dataset]</i> <br/> Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010348: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbw6. DOI: <a href="https://doi.org/10.5517/cc12xbw6">10.5517/cc12xbw6</a> HANDLE: <a href="http://hdl.handle.net/10754/624347">10754/624347</a></li><li><i>[Dataset]</i> <br/> Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010349: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbx7. DOI: <a href="https://doi.org/10.5517/cc12xbx7">10.5517/cc12xbx7</a> HANDLE: <a href="http://hdl.handle.net/10754/624348">10754/624348</a></li><li><i>[Dataset]</i> <br/> Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010350: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xby8. DOI: <a href="https://doi.org/10.5517/cc12xby8">10.5517/cc12xby8</a> HANDLE: <a href="http://hdl.handle.net/10754/624349">10754/624349</a></li><li><i>[Dataset]</i> <br/> Roesle, P., Caporaso, L., Schnitte, M., Goldbach, V., Cavallo, L., & Mecking, S. (2015). CCDC 1010351: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc12xbz9. DOI: <a href="https://doi.org/10.5517/cc12xbz9">10.5517/cc12xbz9</a> HANDLE: <a href="http://hdl.handle.net/10754/624350">10754/624350</a></li></ul>
dc.date.published-online2014-11-21
dc.date.published-print2014-12-03


This item appears in the following Collection(s)

Show simple item record