• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Renewable energy-driven innovative energy-efficient desalination technologies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    APEN-S-13-05107 24-10-2013.pdf
    Size:
    860.6Kb
    Format:
    PDF
    Description:
    Submitted Manuscript
    Download
    Type
    Article
    Authors
    Ghaffour, NorEddine cc
    Lattemann, Sabine
    Missimer, Thomas M.
    Ng, Kim Choon cc
    Sinha, Shahnawaz
    Amy, Gary L.
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Environmental Science and Engineering Program
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2014-04-13
    Online Publication Date
    2014-04-13
    Print Publication Date
    2014-12
    Permanent link to this record
    http://hdl.handle.net/10754/563903
    
    Metadata
    Show full item record
    Abstract
    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group's contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.
    Citation
    Ghaffour, N., Lattemann, S., Missimer, T., Ng, K. C., Sinha, S., & Amy, G. (2014). Renewable energy-driven innovative energy-efficient desalination technologies. Applied Energy, 136, 1155–1165. doi:10.1016/j.apenergy.2014.03.033
    Publisher
    Elsevier BV
    Journal
    Applied Energy
    DOI
    10.1016/j.apenergy.2014.03.033
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.apenergy.2014.03.033
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Environmental Science and Engineering Program; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.