Show simple item record

dc.contributor.authorBucs, Szilard
dc.contributor.authorValladares Linares, Rodrigo
dc.contributor.authorvan Loosdrecht, Mark C.M.
dc.contributor.authorKruithof, Joop C.
dc.contributor.authorVrouwenvelder, Johannes S.
dc.date.accessioned2015-08-03T12:18:15Z
dc.date.available2015-08-03T12:18:15Z
dc.date.issued2014-12
dc.identifier.issn00431354
dc.identifier.pmid25282091
dc.identifier.doi10.1016/j.watres.2014.09.005
dc.identifier.urihttp://hdl.handle.net/10754/563883
dc.description.abstractThe influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC).Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed but are unavoidable.
dc.description.sponsorshipThis work was performed at Wetsus, Centre of Excellence for Sustainable Water Technology (www.wetsus.n1). Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union European Regional Development Fund, the Province of Fryslan, the City of Leeuwarden and by the EZ-KOMPAS Program of the "Samenwerkingsverband Noord-Nederland". The work was funded by Wetsus, the King Abdullah University of Science and Technology (KAUST) and Evides waterbedrijf. The authors like to thank the participants of the Wetsus research theme "Biofouling", KAUST and Evides waterbedrijf for the fruitful discussions and their financial support.
dc.publisherElsevier BV
dc.subjectBiodegradable organic substrate loading rate
dc.subjectBiofilm growth
dc.subjectDesalination
dc.subjectFeed channel pressure drop
dc.subjectMathematical model
dc.subjectPermeate flux
dc.titleImpact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems
dc.typeArticle
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.identifier.journalWater Research
dc.contributor.institutionDepartment of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67Delft, Netherlands
dc.contributor.institutionWetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113Leeuwarden, Netherlands
kaust.personValladares Linares, Rodrigo
kaust.personVrouwenvelder, Johannes S.
kaust.personBucs, Szilard


This item appears in the following Collection(s)

Show simple item record