Making oxidation potentials predictable: Coordination of additives applied to the electronic fine tuning of an iron(II) complex
Type
ArticleAuthors
Haslinger, StefanKück, Jens W.
Hahn, Eva M.
Cokoja, Mirza
Pöthig, Alexander
Basset, Jean-Marie

Kühn, Fritz
KAUST Department
Chemical Science ProgramKAUST Catalysis Center (KCC)
Physical Science and Engineering (PSE) Division
Date
2014-10-21Online Publication Date
2014-10-21Print Publication Date
2014-11-03Permanent link to this record
http://hdl.handle.net/10754/563842
Metadata
Show full item recordAbstract
This work examines the impact of axially coordinating additives on the electronic structure of a bioinspired octahedral low-spin iron(II) N-heterocyclic carbene (Fe-NHC) complex. Bearing two labile trans-acetonitrile ligands, the Fe-NHC complex, which is also an excellent oxidation catalyst, is prone to axial ligand exchange. Phosphine- and pyridine-based additives are used for substitution of the acetonitrile ligands. On the basis of the resulting defined complexes, predictability of the oxidation potentials is demonstrated, based on a correlation between cyclic voltammetry experiments and density functional theory calculated molecular orbital energies. Fundamental insights into changes of the electronic properties upon axial ligand exchange and the impact on related attributes will finally lead to target-oriented manipulation of the electronic properties and consequently to the effective tuning of the reactivity of bioinspired systems.Citation
Haslinger, S., Kück, J. W., Hahn, E. M., Cokoja, M., Pöthig, A., Basset, J.-M., & Kühn, F. E. (2014). Making Oxidation Potentials Predictable: Coordination of Additives Applied to the Electronic Fine Tuning of an Iron(II) Complex. Inorganic Chemistry, 53(21), 11573–11583. doi:10.1021/ic501613aSponsors
This work is based on funding by Award KSA-00069/UK-C0020, made by KAUST. The authors gratefully acknowledge the Gauss Centre for Supercomputing eV for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre, and the TUM-GS is acknowledged for support. J.W.K. thanks the Studienstiftung des Deutsdien Volkes for support, and S.H. is thankful to Maike H. Wahl for her valuable contributions.Publisher
American Chemical Society (ACS)Journal
Inorganic ChemistryRelations
Is Supplemented By:- [Dataset]
Haslinger, S., Kück, J. W., Hahn, E. M., Cokoja, M., Pöthig, A., Basset, J.-M., & Kühn, F. E. (2015). CCDC 992643: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc129xr1. DOI: 10.5517/cc129xr1 HANDLE: 10754/624305 - [Dataset]
Haslinger, S., Kück, J. W., Hahn, E. M., Cokoja, M., Pöthig, A., Basset, J.-M., & Kühn, F. E. (2015). CCDC 992644: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc129xs2. DOI: 10.5517/cc129xs2 HANDLE: 10754/624306 - [Dataset]
Haslinger, S., Kück, J. W., Hahn, E. M., Cokoja, M., Pöthig, A., Basset, J.-M., & Kühn, F. E. (2015). CCDC 992645: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc129xt3. DOI: 10.5517/cc129xt3 HANDLE: 10754/624307 - [Dataset]
Haslinger, S., Kück, J. W., Hahn, E. M., Cokoja, M., Pöthig, A., Basset, J.-M., & Kühn, F. E. (2015). CCDC 992646: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc129xv4. DOI: 10.5517/cc129xv4 HANDLE: 10754/624308
ae974a485f413a2113503eed53cd6c53
10.1021/ic501613a