• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Lecoustre, Vivien R.
    Arias, Paul G.
    Roy, Somesh P.
    Luo, Zhaoyu
    Haworth, Daniel C.
    Im, Hong G. cc
    Lu, Tianfeng
    Trouvé, Arnaud C.
    KAUST Department
    Clean Combustion Research Center
    Computational Reacting Flow Laboratory (CRFL)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2014-11
    Permanent link to this record
    http://hdl.handle.net/10754/563839
    
    Metadata
    Show full item record
    Abstract
    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.
    Citation
    Lecoustre, V. R., Arias, P. G., Roy, S. P., Luo, Z., Haworth, D. C., Im, H. G., … Trouvé, A. (2014). Direct numerical simulations of non-premixed ethylene–air flames: Local flame extinction criterion. Combustion and Flame, 161(11), 2933–2950. doi:10.1016/j.combustflame.2014.05.016
    Sponsors
    This work was sponsored by the National Science Foundation, PetaApps Program awarded to the multiple institutions, with Grant Nos.: OCI-0904660, OCI-0904480, OCI-0904649, OCI-0904771, OCI-0904818, OCI-0905008. The computational resources for the DNS simulations were supported by the NERSC. The authors would like to acknowledge the contributions of R. Sankaran at Oak Ridge National Laboratory; W. Wang from University of Tennessee; and Kwan-Liu Ma from University of California at Davis, for their help and helpful discussions in this work.
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2014.05.016
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2014.05.016
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.