• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Richter, Lee J. cc
    DeLongchamp., Dean M.
    Bokel, Felicia A.
    Engmann, Sebastian
    Chou, Kang Wei
    Amassian, Aram cc
    Schaible, Eric G.
    Hexemer, Alexander
    KAUST Department
    KAUST Solar Center (KSC)
    Material Science and Engineering Program
    Organic Electronics and Photovoltaics Group
    Physical Science and Engineering (PSE) Division
    Date
    2014-09-29
    Online Publication Date
    2014-09-29
    Print Publication Date
    2015-02
    Permanent link to this record
    http://hdl.handle.net/10754/563765
    
    Metadata
    Show full item record
    Abstract
    The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X-ray diffraction (GIXD) and grazing incidence small angle X-ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3-hexylthiophene) and acceptor phenyl-C61-butyric acid methyl ester under the influence of two common additives, 1,8-octanedithiol and 1-chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre-crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM-induced vitrification. The glass transition effects vary system-to-system and may be correlated to the number and composition of phases present during drying. Synchrotron X-ray scattering measurements of nanoscale structure evolution during the drying of polymer-fullerene photovoltaic films are described. Changes in the number and nature of phases, as well as the order within them, reveals the mechanisms by which formulation additives promote structural characteristics leading to higher power conversion efficiencies.
    Citation
    Richter, L. J., DeLongchamp, D. M., Bokel, F. A., Engmann, S., Chou, K. W., Amassian, A., … Hexemer, A. (2014). In Situ Morphology Studies of the Mechanism for Solution Additive Effects on the Formation of Bulk Heterojunction Films. Advanced Energy Materials, 5(3), 1400975. doi:10.1002/aenm.201400975
    Sponsors
    The authors wish to thank Jacquline Johnson and Edwin Chan for assistance in the development of the remote dispense system. Beamline 7.3.3 of the Advanced Light Source is supported by the Director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
    Publisher
    Wiley
    Journal
    Advanced Energy Materials
    DOI
    10.1002/aenm.201400975
    ae974a485f413a2113503eed53cd6c53
    10.1002/aenm.201400975
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.