• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Chen, Paiyen
    Farhat, Mohamed
    Askarpour, Amir Nader
    Tymchenko, Mykhailo
    Alù, Andrea
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Date
    2014-09-03
    Online Publication Date
    2014-09-03
    Print Publication Date
    2014-09-01
    Permanent link to this record
    http://hdl.handle.net/10754/563747
    
    Metadata
    Show full item record
    Abstract
    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a 'one-atom-thick' graphene monolayer is typically associated with intrinsically 'slow light'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.
    Citation
    Chen, P.-Y., Farhat, M., Askarpour, A. N., Tymchenko, M., & Alù, A. (2014). Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer. Journal of Optics, 16(9), 094008. doi:10.1088/2040-8978/16/9/094008
    Sponsors
    The authors would like to thank Dr Sebastien Guenneau for fruitful discussions on graphene acoustics. This work has been partially supported by the Welch Foundation with grant no. F-1662, the Army Research Office with grant no. W911NF-08-1-0348 and the Air Force Office of Scientific Research with grant no. FA9550-13-1-0204.
    Publisher
    IOP Publishing
    Journal
    Journal of Optics
    DOI
    10.1088/2040-8978/16/9/094008
    ae974a485f413a2113503eed53cd6c53
    10.1088/2040-8978/16/9/094008
    Scopus Count
    Collections
    Articles; Electrical and Computer Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.