Show simple item record

dc.contributor.authorChoi, Sangkyu*
dc.contributor.authorCho, Eunseong*
dc.contributor.authorChung, Suk-Ho*
dc.date.accessioned2015-08-03T12:08:39Zen
dc.date.available2015-08-03T12:08:39Zen
dc.date.issued2014-09en
dc.identifier.issn1738494Xen
dc.identifier.doi10.1007/s12206-014-0850-7en
dc.identifier.urihttp://hdl.handle.net/10754/563744en
dc.description.abstractThe extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH4, C3H8, H2, CO and for the mixture fuels of CH4+H2 and CO+H2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H2, CH4, CH4+H2, CO+H2, and rich C3H8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H2, CH4, CH4+H2, CO+H2, and lean C3H8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H2 mixing to CO is found to be quite significant as compared to CH4+H2 cases, which can alter the flame behavior of CO flames to that of H2.en
dc.description.sponsorshipThis work was supported by Saudi Aramco.en
dc.publisherSpringer Science + Business Mediaen
dc.subjectIncomplete reactionen
dc.subjectLewis numberen
dc.subjectLocal equilibrium temperatureen
dc.subjectPreferential diffusionen
dc.subjectStretch rateen
dc.titleQuantification of extinction mechanism in counterflow premixed flamesen
dc.typeArticleen
dc.contributor.departmentClean Combustion Research Center*
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division*
dc.contributor.departmentMechanical Engineering Program*
dc.contributor.departmentCombustion and Laser Diagnostics Laboratory*
dc.identifier.journalJournal of Mechanical Science and Technologyen
dc.contributor.institutionEnvironmental and Energy Systems Research Division, Korea Institute of Machinery & MaterialsDaejeon, South Korea*
dc.contributor.institutionBoiler PLM Team, Doosan Heavy Industries and ConstructionChangwon, South Korea*
kaust.authorChoi, Sangkyu*
kaust.authorChung, Suk-Ho*


This item appears in the following Collection(s)

Show simple item record