Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes
Type
ArticleAuthors
Zhang, MeilingChekan, Jonathan R.
Dodd, Dylan
Hong, Pei-Ying

Radlinsk, Lauren
Revindran, Vanessa
Nair, Satish K.
Mackie, Roderick Ian
Cann, Isaac Ko O
KAUST Department
Environmental Science and Engineering ProgramWater Desalination and Reuse Research Center (WDRC)
Biological and Environmental Sciences and Engineering (BESE) Division
Environmental Microbial Safety and Biotechnology Lab
Date
2014-08-18Online Publication Date
2014-08-18Print Publication Date
2014-09-02Permanent link to this record
http://hdl.handle.net/10754/563707
Metadata
Show full item recordAbstract
Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xy-lose- configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM fromits homolog in the Prevotella bryantii B 14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. Aminimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.Citation
Zhang, M., Chekan, J. R., Dodd, D., Hong, P.-Y., Radlinski, L., Revindran, V., … Cann, I. (2014). Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proceedings of the National Academy of Sciences, 111(35), E3708–E3717. doi:10.1073/pnas.1406156111PubMed ID
25136124PubMed Central ID
PMC4156774Additional Links
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156774ae974a485f413a2113503eed53cd6c53
10.1073/pnas.1406156111