• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjects

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    An extension of clarke's model with stochastic amplitude flip processes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hoel, Hakon
    Nyberg, Henrik
    KAUST Department
    Applied Mathematics and Computational Science Program
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2014-07
    Permanent link to this record
    http://hdl.handle.net/10754/563622
    
    Metadata
    Show full item record
    Abstract
    Stochastic modeling is an essential tool for studying statistical properties of wireless channels. In multipath fading channel (MFC) models, the signal reception is modeled by a sum of wave path contributions, and Clarke's model is an important example of such which has been widely accepted in many wireless applications. However, since Clarke's model is temporally deterministic, Feng and Field noted that it does not model real wireless channels with time-varying randomness well. Here, we extend Clarke's model to a novel time-varying stochastic MFC model with scatterers randomly flipping on and off. Statistical properties of the MFC model are analyzed and shown to fit well with real signal measurements, and a limit Gaussian process is derived from the model when the number of active wave paths tends to infinity. A second focus of this work is a comparison study of the error and computational cost of generating signal realizations from the MFC model and from its limit Gaussian process. By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model's algorithm. Numerical examples that strengthen these observations are also presented. © 2014 IEEE.
    Sponsors
    This work was supported in part by the Center for Industrial and Applied Mathematics at the Royal Institute of Technology (KTH) and in part by the King Abdullah University of Science and Technology Strategic Research Initiative Center for Uncertainty Quantification in Computational Science. The associate editor coordinating the review of this paper and approving it for publication was O. Oyman.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    IEEE Transactions on Communications
    ISSN
    00906778
    DOI
    10.1109/TCOMM.2014.2328595
    ae974a485f413a2113503eed53cd6c53
    10.1109/TCOMM.2014.2328595
    Scopus Count
    Collections
    Articles; Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.