• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Rational design of organic semiconductors for texture control and self-patterning on halogenated surfaces

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ward, Jeremy W.
    Li, Ruipeng
    Obaid, Abdulmalik
    Payne, Marcia M.
    Smilgies, Detlef Matthias
    Anthony, John Edward
    Amassian, Aram cc
    Jurchescu, Oana D. cc
    KAUST Department
    KAUST Solar Center (KSC)
    Material Science and Engineering Program
    Office of the VP
    Organic Electronics and Photovoltaics Group
    Physical Science and Engineering (PSE) Division
    Date
    2014-05-15
    Online Publication Date
    2014-05-15
    Print Publication Date
    2014-08
    Permanent link to this record
    http://hdl.handle.net/10754/563551
    
    Metadata
    Show full item record
    Abstract
    Understanding the interactions at interfaces between the materials constituting consecutive layers within organic thin-film transistors (OTFTs) is vital for optimizing charge injection and transport, tuning thin-film microstructure, and designing new materials. Here, the influence of the interactions at the interface between a halogenated organic semiconductor (OSC) thin film and a halogenated self-assembled monolayer on the formation of the crystalline texture directly affecting the performance of OTFTs is explored. By correlating the results from microbeam grazing incidence wide angle X-ray scattering (μGIWAXS) measurements of structure and texture with OTFT characteristics, two or more interaction paths between the terminating atoms of the semiconductor and the halogenated surface are found to be vital to templating a highly ordered morphology in the first layer. These interactions are effective when the separating distance is lower than 2.5 dw, where dw represents the van der Waals distance. The ability to modulate charge carrier transport by several orders of magnitude by promoting "edge-on" versus "face-on" molecular orientation and crystallographic textures in OSCs is demonstrated. It is found that the "edge-on" self-assembly of molecules forms uniform, (001) lamellar-textured crystallites which promote high charge carrier mobility, and that charge transport suffers as the fraction of the "face-on" oriented crystallites increases. The role of interfacial halogenation in mediating texture formation and the self-patterning of organic semiconductor films, as well as the resulting effects on charge transport in organic thin-film transistors, are explored. The presence of two or more anchoring sites between a halogenated semiconductor and a halogenated self-assembled monolayer, closer than about twice the corresponding van der Waals distance, alter the microstructure and improve electrical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Citation
    Ward, J. W., Li, R., Obaid, A., Payne, M. M., Smilgies, D.-M., Anthony, J. E., … Jurchescu, O. D. (2014). Rational Design of Organic Semiconductors for Texture Control and Self-Patterning on Halogenated Surfaces. Advanced Functional Materials, 24(32), 5052–5058. doi:10.1002/adfm.201400219
    Sponsors
    The work at WFU was supported by the NSF grant ECCS-1102275. JWW gratefully acknowledges financial support from the NSF Graduate Student Fellowship (Grant No. DGE-0907738). Work at UKY was supported by the NSF grant CMMI-1255494. Part of this work was performed at the Cornell High Energy Synchrotron Source supported by the National Science Foundation and NIH-NIGMS via NSF award DMR-0936384.
    Publisher
    Wiley
    Journal
    Advanced Functional Materials
    DOI
    10.1002/adfm.201400219
    10.1002/adfm.201470216
    ae974a485f413a2113503eed53cd6c53
    10.1002/adfm.201400219
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.