Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling
Type
ArticleKAUST Department
Chemical Science ProgramKAUST Solar Center (KSC)
Physical Science and Engineering (PSE) Division
Ultrafast Laser Spectroscopy and Four-dimensional Electron Imaging Research Group
Date
2014-04-17Online Publication Date
2014-04-17Print Publication Date
2014-05Permanent link to this record
http://hdl.handle.net/10754/563536
Metadata
Show full item recordAbstract
We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.Citation
Mohammed, O. F., Xiao, D., Batista, V. S., & Nibbering, E. T. J. (2014). Excited-State Intramolecular Hydrogen Transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) Characterized by Ultrafast Electronic and Vibrational Spectroscopy and Computational Modeling. The Journal of Physical Chemistry A, 118(17), 3090–3099. doi:10.1021/jp501612fSponsors
V.S.B. acknowledges financial support by the National Science Foundation (Grant CHE 0911520) and supercomputer time from NERSC and from the High Performance Computing facilities at Yale University. We thank Dr. Alexey Gusev for allowing access to his facilities at Ultrafast Systems LLC, 1748 Independence Blvd. Bld. G, Sarasota, FL 34234, U.S.A. We also thank Dr. Allen Ricks for his help and support during conducting the time-resolved data.Publisher
American Chemical Society (ACS)PubMed ID
24684387ae974a485f413a2113503eed53cd6c53
10.1021/jp501612f
Scopus Count
Related articles
- Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy.
- Authors: Kumar PH, Venkatesh Y, Siva D, Ramakrishna B, Bangal PR
- Issue date: 2015 Feb 26
- Evidence for an intramolecular charge transfer state in 12'-apo-beta-caroten-12'-al and 8'-apo-beta-caroten-8'-al: influence of solvent polarity and temperature.
- Authors: Kopczynski M, Ehlers F, Lenzer T, Oum K
- Issue date: 2007 Jun 28
- Ultrafast dynamics in thiophene investigated by femtosecond pump probe photoelectron spectroscopy and theory.
- Authors: Weinkauf R, Lehr L, Schlag EW, Salzmann S, Marian CM
- Issue date: 2008 Jan 21
- Ultrafast excited-state dynamics of rhenium(I) photosensitizers [Re(Cl)(CO)3(N,N)] and [Re(imidazole)(CO)3(N,N)]+: diimine effects.
- Authors: El Nahhas A, Consani C, Blanco-Rodríguez AM, Lancaster KM, Braem O, Cannizzo A, Towrie M, Clark IP, Zális S, Chergui M, Vlcek A Jr
- Issue date: 2011 Apr 4
- Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.
- Authors: Venkatesh Y, Venkatesan M, Ramakrishna B, Bangal PR
- Issue date: 2016 Sep 8