Show simple item record

dc.contributor.authorHajaiej, Hichem
dc.contributor.authorMarkowich, Peter A.
dc.contributor.authorTrabelsi, Saber
dc.date.accessioned2015-08-03T11:53:05Z
dc.date.available2015-08-03T11:53:05Z
dc.date.issued2014-04-18
dc.identifier.issn14249286
dc.identifier.doi10.1007/s00032-014-0218-6
dc.identifier.urihttp://hdl.handle.net/10754/563504
dc.description.abstractIn this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges on the concentration-compactness approach. In the second part, we will treat orthogonal constrained problems for another class of integrands using density matrices method. © 2014 Springer Basel.
dc.description.sponsorshipThe first author thanks the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-VPP-124.
dc.publisherSpringer Science + Business Media
dc.relation.urlhttp://arxiv.org/abs/arXiv:1310.2517v1
dc.subjectconstrained minimization problem
dc.subjectVectorial Schrödinger
dc.titleMinimizers of a Class of Constrained Vectorial Variational Problems: Part I
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.identifier.journalMilan Journal of Mathematics
dc.contributor.institutionDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
dc.identifier.arxividarXiv:1310.2517
kaust.personMarkowich, Peter A.
kaust.personTrabelsi, Saber


This item appears in the following Collection(s)

Show simple item record