• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Warnan, Julien
    El Labban, Abdulrahman cc
    Cabanetos, Clement
    Hoke, Eric T.
    Shukla, Pradeep Kumar
    Risko, Chad
    Brédas, Jean Luc
    McGehee, Michael D.
    Beaujuge, Pierre cc
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Chemical Science Program
    KAUST Solar Center (KSC)
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    KAUST Grant Number
    KUS-C1-015-21
    Date
    2014-03-28
    Online Publication Date
    2014-03-28
    Print Publication Date
    2014-04-08
    Permanent link to this record
    http://hdl.handle.net/10754/563493
    
    Metadata
    Show full item record
    Abstract
    Among π-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-b′]dithiophene- thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)-incorporated into the side chains of PBDTTPD polymers-can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3-6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells. © 2014 American Chemical Society.
    Citation
    Warnan, J., El Labban, A., Cabanetos, C., Hoke, E. T., Shukla, P. K., Risko, C., … Beaujuge, P. M. (2014). Ring Substituents Mediate the Morphology of PBDTTPD-PCBM Bulk-Heterojunction Solar Cells. Chemistry of Materials, 26(7), 2299–2306. doi:10.1021/cm500172w
    Sponsors
    The authors acknowledge financial support under Baseline Research Funding from King Abdullah University of Science and Technology (KAUST). E.H., CR., J.L.B., and M.D.M.c.G. acknowledge financial support by the Center for Advanced Molecular Photovoltaics (CAMP) (Award KUS-C1-015-21) made possible by KAUST. The authors thank KAUST Analytical Core Laboratories for mass spectrometry, SEC measurements and elemental analyses, and Sandra Seywald (MPIP-Mainz, Germany) for additional SEC measurements. The authors thank the Advanced Imaging and Characterization Laboratories at KAUST for technical support. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource user facility, operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. P.K.S. is grateful to the University Grants Commission, New Delhi, India for a research fellowship.
    Publisher
    American Chemical Society (ACS)
    Journal
    Chemistry of Materials
    DOI
    10.1021/cm500172w
    ae974a485f413a2113503eed53cd6c53
    10.1021/cm500172w
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Physical Science and Engineering (PSE) Division; Chemical Science Program; Material Science and Engineering Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.