Show simple item record

dc.contributor.authorZhang, Sui
dc.contributor.authorSukitpaneenit, Panu
dc.contributor.authorChung, Neal Tai-Shung
dc.date.accessioned2015-08-03T11:52:18Z
dc.date.available2015-08-03T11:52:18Z
dc.date.issued2014-04
dc.identifier.citationZhang, S., Sukitpaneenit, P., & Chung, T.-S. (2014). Design of robust hollow fiber membranes with high power density for osmotic energy production. Chemical Engineering Journal, 241, 457–465. doi:10.1016/j.cej.2013.10.063
dc.identifier.issn13858947
dc.identifier.doi10.1016/j.cej.2013.10.063
dc.identifier.urihttp://hdl.handle.net/10754/563470
dc.description.abstractThis study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.
dc.description.sponsorshipThis research was funded by the Singapore National Research Foundation under its Competitive Research Program for the project entitled, "Advanced FO Membranes and Membrane Systems for Wastewater Treatment, Water Reuse and Seawater Desalination" (Grant Number: R-279-000-336-281) and was also supported by the Singapore National Research Foundation under its Environmental 81 Water Technologies Strategic Research Programme and administered by the Environment & Water Industry Programme Office (EWI) of the PUB under the project titled "Membrane Development for Osmotic Power Generation, Part 1. Materials Development and Membrane Fabrication" (1102-IRIS-11-01) and NUS Grant No. R-279-000-381-279. The authors would like to thank Mr. Wang Peng for his suggestions.
dc.publisherElsevier BV
dc.subjectHollow fiber
dc.subjectOsmotic power
dc.subjectPolyethersulfone
dc.subjectPressure retarded osmosis
dc.subjectThin film composite
dc.titleDesign of robust hollow fiber membranes with high power density for osmotic energy production
dc.typeArticle
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.identifier.journalChemical Engineering Journal
dc.contributor.institutionDepartment of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
kaust.personChung, Neal Tai-Shung


This item appears in the following Collection(s)

Show simple item record