Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts
Type
ArticleKAUST Department
Catalysis for Energy Conversion (CatEC)Chemical Engineering Program
Chemical Science Program
KAUST Catalysis Center (KCC)
Physical Science and Engineering (PSE) Division
Date
2014-03-24Online Publication Date
2014-03-24Print Publication Date
2014-03-24Permanent link to this record
http://hdl.handle.net/10754/563453
Metadata
Show full item recordAbstract
A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Citation
Liang, Y., Li, Z., Nourdine, M., Shahid, S., & Takanabe, K. (2014). Methane Coupling Reaction in an Oxy-Steam Stream through an OH Radical Pathway by using Supported Alkali Metal Catalysts. ChemCatChem, n/a–n/a. doi:10.1002/cctc.201400018Publisher
WileyJournal
ChemCatChemae974a485f413a2113503eed53cd6c53
10.1002/cctc.201400018