• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Cai, Liming
    Sudholt, Alena
    Lee, Dongjoon
    Egolfopoulos, Fokion N.
    Pitsch, Heinz G.
    Westbrook, Charles K.
    Sarathy, Mani cc
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Physical Science and Engineering (PSE) Division
    Date
    2014-03
    Permanent link to this record
    http://hdl.handle.net/10754/563418
    
    Metadata
    Show full item record
    Abstract
    The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373. K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers. © 2013 The Combustion Institute.
    Citation
    Cai, L., Sudholt, A., Lee, D. J., Egolfopoulos, F. N., Pitsch, H., Westbrook, C. K., & Sarathy, S. M. (2014). Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames. Combustion and Flame, 161(3), 798–809. doi:10.1016/j.combustflame.2013.10.003
    Sponsors
    The authors are grateful to Dr. Mariam Al Rashidi (KAUST, Saudi Arabia) and Dr. Alex Davis (NIST, USA) for performing the quantum chemical BDE calculations. This work was performed as part of the Cluster of Excellence "Tailor-Made Fuels from Biomass", which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities, and as part of the collaborative research center (SFB) 1029 which is funded by the German Research Foundation (DFG). This work was partly funded by the Clean Combustion Research Center at the King Abdullah University of Science and Technology. Co-author S.M.S. acknowledges funding from the TMFB Visiting Fellowship program. The LLNL work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The USC work was supported as part of the CEFRC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001198.
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2013.10.003
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2013.10.003
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.