• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Beck, Joakim
    Nobile, Fabio
    Tamellini, Lorenzo
    Tempone, Raul cc
    KAUST Department
    Applied Mathematics and Computational Science Program
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Stochastic Numerics Research Group
    Date
    2014-03
    Permanent link to this record
    http://hdl.handle.net/10754/563416
    
    Metadata
    Show full item record
    Abstract
    In this work we consider quasi-optimal versions of the Stochastic Galerkin method for solving linear elliptic PDEs with stochastic coefficients. In particular, we consider the case of a finite number N of random inputs and an analytic dependence of the solution of the PDE with respect to the parameters in a polydisc of the complex plane CN. We show that a quasi-optimal approximation is given by a Galerkin projection on a weighted (anisotropic) total degree space and prove a (sub)exponential convergence rate. As a specific application we consider a thermal conduction problem with non-overlapping inclusions of random conductivity. Numerical results show the sharpness of our estimates. © 2013 Elsevier Ltd. All rights reserved.
    Citation
    Beck, J., Nobile, F., Tamellini, L., & Tempone, R. (2014). Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients. Computers & Mathematics with Applications, 67(4), 732–751. doi:10.1016/j.camwa.2013.03.004
    Sponsors
    The authors would like to recognize the support of the PECOS center at ICES, University of Texas at Austin (Project Number 024550, Center for Predictive Computational Science). Support from the VR project "Effektiva numeriska metoder for stokastiska differentialekvationer med tillampningar" and King Abdullah University of Science and Technology (KAUST) AEA project "Predictability and Uncertainty Quantification for Models of Porous Media" is also acknowledged. The second and third authors have been supported by the Italian grant FIRB-IDEAS (Project n. RBID08223Z) "Advanced numerical techniques for uncertainty quantification in engineering and life science problems". The fourth author is a member of the KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering.
    Publisher
    Elsevier BV
    Journal
    Computers & Mathematics with Applications
    DOI
    10.1016/j.camwa.2013.03.004
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.camwa.2013.03.004
    Scopus Count
    Collections
    Articles; Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.