Show simple item record

dc.contributor.authorRojas, Jhonathan Prieto
dc.contributor.authorSevilla, Galo T.
dc.contributor.authorGhoneim, Mohamed T.
dc.contributor.authorInayat, Salman Bin
dc.contributor.authorAhmed, Sally
dc.contributor.authorHussain, Aftab M.
dc.contributor.authorHussain, Muhammad Mustafa
dc.date.accessioned2015-08-03T11:47:42Z
dc.date.available2015-08-03T11:47:42Z
dc.date.issued2014-02-03
dc.identifier.citationRojas, J. P., Torres Sevilla, G. A., Ghoneim, M. T., Inayat, S. B., Ahmed, S. M., Hussain, A. M., & Hussain, M. M. (2014). Transformational Silicon Electronics. ACS Nano, 8(2), 1468–1474. doi:10.1021/nn405475k
dc.identifier.issn19360851
dc.identifier.pmid24476361
dc.identifier.doi10.1021/nn405475k
dc.identifier.urihttp://hdl.handle.net/10754/563403
dc.description.abstractIn today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.
dc.description.sponsorshipWe would like to thank the KAUST OCRF Competitive Research Grant CRG-1-2012-HUS-008 and the staff of the KAUST Advanced Nanofabrication Facilities for their technical support during the development of this project.
dc.publisherAmerican Chemical Society (ACS)
dc.subjectμLIB
dc.subjectflexible electronics
dc.subjectMIMCAP
dc.subjectMOSCAP
dc.subjectMOSFET
dc.subjectsilicon (100)
dc.titleTransformational silicon electronics
dc.typeArticle
dc.contributor.departmentIntegrated Nanotechnology Lab
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.identifier.journalACS Nano
kaust.personRojas, Jhonathan Prieto
kaust.personSevilla, Galo T.
kaust.personGhoneim, Mohamed T.
kaust.personInayat, Salman Bin
kaust.personAhmed, Sally
kaust.personHussain, Aftab M.
kaust.personHussain, Muhammad Mustafa
kaust.grant.numberCRG-1-2012-HUS-008
kaust.acknowledged.supportUnitAdvanced Nanofabrication Facilities
kaust.acknowledged.supportUnitKAUST OCRF Competitive Research
dc.date.published-online2014-02-03
dc.date.published-print2014-02-25


This item appears in the following Collection(s)

Show simple item record