Type
ArticleKAUST Department
Visual Computing Center (VCC)Date
2014-01-01Permanent link to this record
http://hdl.handle.net/10754/563325
Metadata
Show full item recordAbstract
Let m and p1,.,pr < m - 2 be positive integers. The set of links of codimension > 2, Em(∐k=1 rSPk), is the set of smooth isotopy classes of smooth embeddings ∐k=1 rSPk → Sm. Haefliger showed that Em(∐k=1 rSPk) is a finitely generated abelian group with respect to embedded connected summation and computed its rank in the case of knots, i.e. r = 1. For r > 1 and for restrictions on p1,.,pr the rank of this group can be computed using results of Haefliger or Nezhinsky. Our main result determines the rank of the group Em(∐k=1 rSPk) in general. In particular we determine precisely when Em(∐k=1 rSPk) is finite. We also accomplish these tasks for framed links. Our proofs are based on the Haefliger exact sequence for groups of links and the theory of Lie algebras. © de Gruyter 2014.Citation
Crowley, D., Ferry, S. C., & Skopenkov, M. (2014). The rational classification of links of codimension > 2. Forum Mathematicum, 26(1). doi:10.1515/form.2011.158Sponsors
The third author was supported in part by INTAS grant 06-1000014-6277, Moebius Contest Foundation for Young Scientists and Euler Foundation.Publisher
Walter de Gruyter GmbHJournal
Forum Mathematicumae974a485f413a2113503eed53cd6c53
10.1515/FORM.2011.158