• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Model of parameters controlling resistance of pipeline steels to hydrogen-induced cracking

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Traidia, Abderrazak
    El-Sherik, A. M.
    Duval, Sébastien
    Lubineau, Gilles cc
    El Yagoubi, Jalal
    KAUST Department
    Composite and Heterogeneous Material Analysis and Simulation Laboratory (COHMAS)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2014-01
    Permanent link to this record
    http://hdl.handle.net/10754/563309
    
    Metadata
    Show full item record
    Abstract
    NACE MR0175/ISO 15156-2 standard provides test conditions and acceptance criteria to evaluate the resistance of carbon and low-alloy steels to hydrogen-induced cracking (HIC). The second option proposed by this standard offers a large flexibility on the choice of test parameters (pH, H2S partial pressure, and test duration), with zero tolerance to HIC initiation as an acceptance condition. The present modeling work is a contribution for a better understanding on how the test parameters and inclusion size can influence HIC initiation, and is therefore of potential interest for both steel makers and endusers. A model able to link the test operating parameters (pH, partial pressure of H2S, and temperature) to the maximum hydrogen pressure generated in the microstructural defects is proposed. The model results are then used to back calculate the minimum fracture toughness below which HIC extends. A minimum fracture toughness of 400 MPa√mm, at the segregation zone, prevents HIC occurrence and leads to successfully pass the HIC qualification test, even under extreme test conditions. The computed results show that the maximum generated pressure can reach up to 1,500 MPa. The results emphasize that the H2S partial pressure and test temperature can both have a strong influence on the final test results, whereas the influence of the pH of the test solution is less significant. © 2014, NACE International.
    Citation
    Traidia, A., El-Sherik, A. M., Duval, S., Lubineau, G., & El-Yagoubi, J. (2014). Model of Parameters Controlling Resistance of Pipeline Steels to Hydrogen-Induced Cracking. CORROSION, 70(1), 87–94. doi:10.5006/1056
    Publisher
    NACE International
    Journal
    CORROSION
    DOI
    10.5006/1056
    ae974a485f413a2113503eed53cd6c53
    10.5006/1056
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.