• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Chou, Kang Wei
    Khan, Hadayat Ullah
    Niazi, Muhammad Rizwan cc
    Yan, Buyi
    Li, Ruipeng
    Payne, Marcia M.
    Anthony, John Edward
    Smilgies, Detlef Matthias
    Amassian, Aram cc
    KAUST Department
    Electrical Engineering Program
    KAUST Solar Center (KSC)
    Material Science and Engineering Program
    Office of the VP
    Organic Electronics and Photovoltaics Group
    Physical Science and Engineering (PSE) Division
    KAUST Grant Number
    FIC/2010/04
    Date
    2014
    Permanent link to this record
    http://hdl.handle.net/10754/563216
    
    Metadata
    Show full item record
    Abstract
    Spin-coating is currently the most widely used solution processing method in organic electronics. Here, we report, for the first time, a direct investigation of the formation process of the small-molecule organic semiconductor (OSC) 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene during spin-coating in the context of an organic thin film transistor (OTFT) application. The solution thinning and thin film formation were monitored in situ by optical reflectometry and grazing incidence wide angle X-ray scattering, respectively, both of which were performed during spin-coating. We find that OSC thin film formation is akin to a quenching process, marked by a deposition rate of ∼100 nm s-1, nearly three orders of magnitude faster than drop-casting. This is then followed by a more gradual crystallization and healing step which depends upon the spinning speed. We associate this to further crystallization and healing of defects by residency of the residual solvent trapped inside the kinetically trapped film. The residency time of the trapped solvent is extended to several seconds by slowing the rotational speed of the substrate and is credited with improving the carrier mobility by nearly two orders of magnitude. Based on this insight, we deliberately slow down the solvent evaporation further and increase the carrier mobility by an additional order of magnitude. These results demonstrate how spin-coating conditions can be used as a handle over the crystallinity of organic semiconductors otherwise quenched during initial formation only to recrystallize and heal during extended interaction with the trapped solvent. This journal is © the Partner Organisations 2014.
    Sponsors
    The authors thank the Frechet group at UC Berkeley for providing access to a fume hood during synchrotron experiments and for help with profilometry measurements and the Thoroddsen group at KAUST for assistance with high speed optical imaging of the spin-coating process. We'd like to thank Eunhee Lim of the Advanced Light Source for technical assistance. Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST) and by KAUST's Office of Competitive Research Funds under award number FIC/2010/04. The authors acknowledge use of the D1 beam line at the Cornell High Energy Synchrotron Source supported by the National Science Foundation and NIH-NIGMS via NSF grant DMR-1332208.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Journal of Materials Chemistry C
    DOI
    10.1039/c4tc00981a
    ae974a485f413a2113503eed53cd6c53
    10.1039/c4tc00981a
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Electrical Engineering Program; Material Science and Engineering Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.