On the static loop modes in the marching-on-in-time solution of the time-domain electric field integral equation
Type
ArticleAuthors
Shi, Yifei
Bagci, Hakan

Lu, Mingyu
KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Computational Electromagnetics Laboratory
Date
2014Permanent link to this record
http://hdl.handle.net/10754/563195
Metadata
Show full item recordAbstract
When marching-on-in-time (MOT) method is applied to solve the time-domain electric field integral equation, spurious internal resonant and static loop modes are always observed in the solution. The internal resonant modes have recently been studied by the authors; this letter investigates the static loop modes. Like internal resonant modes, static loop modes, in theory, should not be observed in the MOT solution since they do not satisfy the zero initial conditions; their appearance is attributed to numerical errors. It is discussed in this letter that the dependence of spurious static loop modes on numerical errors is substantially different from that of spurious internal resonant modes. More specifically, when Rao-Wilton-Glisson functions and Lagrange interpolation functions are used as spatial and temporal basis functions, respectively, errors due to space-time discretization have no discernible impact on spurious static loop modes. Numerical experiments indeed support this discussion and demonstrate that the numerical errors due to the approximate solution of the MOT matrix system have dominant impact on spurious static loop modes in the MOT solution. © 2014 IEEE.Citation
Shi, Y., Bagci, H., & Lu, M. (2014). On the Static Loop Modes in the Marching-on-in-Time Solution of the Time-Domain Electric Field Integral Equation. IEEE Antennas and Wireless Propagation Letters, 13, 317–320. doi:10.1109/lawp.2014.2305716Sponsors
This work was supported in part by the National Science Foundation under Grant ECCS 1303142 and the Center for Uncertainty Quantification in Computational Science and Engineering at KAUST.ae974a485f413a2113503eed53cd6c53
10.1109/LAWP.2014.2305716