• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    In situ UV-visible absorption during spin-coating of organic semiconductors: A new probe for organic electronics and photovoltaics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Abdelsamie, Maged cc
    Zhao, Kui cc
    Niazi, Muhammad Rizwan cc
    Chou, Kang Wei
    Amassian, Aram cc
    KAUST Department
    KAUST Solar Center (KSC)
    Material Science and Engineering Program
    Organic Electronics and Photovoltaics Group
    Physical Science and Engineering (PSE) Division
    Date
    2014
    Permanent link to this record
    http://hdl.handle.net/10754/563188
    
    Metadata
    Show full item record
    Abstract
    Spin-coating is the most commonly used technique for the lab-scale production of solution processed organic electronic, optoelectronic and photovoltaic devices. Spin-coating produces the most efficient solution-processed organic solar cells and has been the preferred approach for rapid screening and optimization of new organic semiconductors and formulations for electronic and optoelectronic applications, both in academia and in industrial research facilities. In this article we demonstrate, for the first time, a spin-coating experiment monitored in situ by time resolved UV-visible absorption, the most commonly used, simplest, most direct and robust optical diagnostic tool used in organic electronics. In the first part, we successfully monitor the solution-to-solid phase transformation and thin film formation of poly(3-hexylthiophene) (P3HT), the de facto reference conjugated polymer in organic electronics and photovoltaics. We do so in two scenarios which differ by the degree of polymer aggregation in solution, prior to spin-coating. We find that a higher degree of aggregation in the starting solution results in small but measurable differences in the solid state, which translate into significant improvements in the charge carrier mobility of organic field-effect transistors (OFET). In the second part, we monitor the formation of a bulk heterojunction photoactive layer based on a P3HT-fullerene blend. We find that the spin-coating conditions that lead to slower kinetics of thin film formation favour a higher degree of polymer aggregation in the solid state and increased conjugation length along the polymer backbone. Using this insight, we devise an experiment in which the spin-coating process is interrupted prematurely, i.e., after liquid ejection is completed and before the film has started to form, so as to dramatically slow the thin film formation kinetics, while maintaining the same thickness and uniformity. These changes yield substantial improvements to the power conversion efficiency of solar cells without requiring additional thermal annealing, or the use of solvent additives. Through these simple examples, we demonstrate that gaining insight into the thin film formation process can inspire the development of new processing strategies. The insight into the inner workings of spin-coating may be increasingly important to improving the performance or efficiency of roll-to-roll manufactured devices. This journal is © the Partner Organisations 2014.
    Citation
    Abdelsamie, M., Zhao, K., Niazi, M. R., Chou, K. W., & Amassian, A. (2014). In situ UV-visible absorption during spin-coating of organic semiconductors: a new probe for organic electronics and photovoltaics. Journal of Materials Chemistry C, 2(17), 3373. doi:10.1039/c3tc32077d
    Sponsors
    We would like to acknowledge the technical support of the workshop team at the King Abdullah University of Science and Technology (KAUST), namely Mr Ali Khoder Raad, Mr Meshal Abdulkareem, Mr Yang Liu and Mr Yousef I. Al Mosri, for their valuable assistance with the designing and building of the spin coater for the in-situ UV-vis absorption measurements. We would like to thank Ms Anastasia Khrenova for assistance with photography. Part of this work was funded by the Office of Competitive Research Funds (OCRF) under FIC, CRG and AEA grants.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Journal of Materials Chemistry C
    DOI
    10.1039/c3tc32077d
    ae974a485f413a2113503eed53cd6c53
    10.1039/c3tc32077d
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.