• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Dimitrov, Marin
    Vanderborght, Jan P.
    Kostov, K. G.
    Jadoon, Khan
    Weihermüller, Lutz
    Jackson, Thomas J.
    Bindlish, Rajat
    Pachepsky, Ya A.
    Schwank, Mike
    Vereecken, Harry
    KAUST Department
    Water Desalination and Reuse Research Center (WDRC)
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2014-01-13
    Online Publication Date
    2014-01-13
    Print Publication Date
    2014-01
    Permanent link to this record
    http://hdl.handle.net/10754/563172
    
    Metadata
    Show full item record
    Abstract
    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.
    Citation
    Dimitrov, M., Vanderborght, J., Kostov, K. G., Jadoon, K. Z., Weihermüller, L., Jackson, T. J., … Vereecken, H. (2014). Soil Hydraulic Parameters and Surface Soil Moisture of a Tilled Bare Soil Plot Inversely Derived from L-Band Brightness Temperatures. Vadose Zone Journal, 13(1), vzj2013.04.0075. doi:10.2136/vzj2013.04.0075
    Sponsors
    This study is a part of the research unit FOR 1083 MUSIS (Multi-Scale Interfaces in Unsaturated Soil) funded by the German Research Foundation (DFG). We thank Prof. Dr. P.-S. Lammers and Dr. Lutz Damerow (Institute of Agriculture Engineering) for providing the laser profiler. We thank the team of H. Jagdfeld (Central Institute of Technology, Research Centre Julich) for the development of the holding construction of the radiometer; the team of A. Egmen and D. Schnabel (technician workshop of IBG, Research Centre Julich) for building the holding construction of the radiometer. We thank C. Steenpass, Dr. U. Rosenbaum, and Dr. F. Jonard for support during the development of the inversion approach. We thank the technician staff of the Agrosphere Institute, especially R. Harms and F. Engels, for technical support during the measurements; A. Langen for laboratory measurements of the soil hydraulic properties, and N. Hermes for the logging software for the radiometer data. M. Dimitrov thanks Dr. S. Huisman, Dr. A. Graf, Dr. J. Bikowski, Dr. I. Mladenova and Dr. Th. Holmes for all of the consultations and the model improvement. The USDA is an equal opportunity provider and employer.
    Publisher
    Wiley
    Journal
    Vadose Zone Journal
    DOI
    10.2136/vzj2013.04.0075
    ae974a485f413a2113503eed53cd6c53
    10.2136/vzj2013.04.0075
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.