Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection
Type
ArticleAuthors
Bougot-Robin, KristelleKodzius, Rimantas

Yue, Weisheng
Chen, Longqing
Li, Shunbo
Zhang, Xixiang

Bénisty, Henri
Wen, Weijia
KAUST Department
Advanced Nanofabrication, Imaging and Characterization Core LabComputational Bioscience Research Center (CBRC)
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Core Labs
KAUST-HKUST Micro/Nanofluidic Joint Laboratory
Material Science and Engineering Program
Nanofabrication Core Lab
Physical Science and Engineering (PSE) Division
Date
2013-12-20Online Publication Date
2013-12-20Print Publication Date
2014-04Permanent link to this record
http://hdl.handle.net/10754/563155
Metadata
Show full item recordAbstract
2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (∼30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ∼10 pg/mm2. Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies. © 2013 Springer Science+Business Media.Sponsors
The authors acknowledge L. Wang, X. Xiao, Boon S. Ooi, Q. Zhang and R. H. Austin for fruitful discussion. We thank as well HKUST Nanofabrication facilities staff for their help in chip fabrication process. The electron beam lithography project is supported by University Grants Committee reference SEG_HKUST10. The project is supported by RGC grant number 674710, as well as grant RPC11SC01.Publisher
Springer NatureJournal
Biomedical MicrodevicesPubMed ID
24357005ae974a485f413a2113503eed53cd6c53
10.1007/s10544-013-9832-2
Scopus Count
Collections
Nanofabrication Core Lab; Articles; Imaging and Characterization Core Lab; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program; Computational Bioscience Research Center (CBRC); Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionRelated articles
- Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments.
- Authors: Zhang Q, Lambert G, Liao D, Kim H, Robin K, Tung CK, Pourmand N, Austin RH
- Issue date: 2011 Sep 23
- Bactericidal activity and target preference of a piperazinyl-cross-linked ciprofloxacin dimer with Staphylococcus aureus and Escherichia coli.
- Authors: Zhao X, Quinn B, Kerns R, Drlica K
- Issue date: 2006 Dec
- "Peak tracking chip" for label-free optical detection of bio-molecular interaction and bulk sensing.
- Authors: Bougot-Robin K, Li S, Zhang Y, Hsing IM, Benisty H, Wen W
- Issue date: 2012 Oct 21
- Class 1 integrons in ciprofloxacin-resistant Escherichia coli strains from two Dutch hospitals.
- Authors: Mooij MJ, Schouten I, Vos G, Van Belkum A, Vandenbroucke-Grauls CM, Savelkoul PH, Schultsz C
- Issue date: 2005 Nov
- Microbiology. Antibiotic resistance, not shaken or stirred.
- Authors: Frisch RL, Rosenberg SM
- Issue date: 2011 Sep 23