Time line cell tracking for the approximation of lagrangian coherent structures with subgrid accuracy
Type
ArticleKAUST Department
Visual Computing Center (VCC)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Computer Science Program
Date
2013-12-05Online Publication Date
2013-12-05Print Publication Date
2014-02Permanent link to this record
http://hdl.handle.net/10754/563145
Metadata
Show full item recordAbstract
Lagrangian coherent structures (LCSs) have become a widespread and powerful method to describe dynamic motion patterns in time-dependent flow fields. The standard way to extract LCS is to compute height ridges in the finite-time Lyapunov exponent field. In this work, we present an alternative method to approximate Lagrangian features for 2D unsteady flow fields that achieve subgrid accuracy without additional particle sampling. We obtain this by a geometric reconstruction of the flow map using additional material constraints for the available samples. In comparison to the standard method, this allows for a more accurate global approximation of LCS on sparse grids and for long integration intervals. The proposed algorithm works directly on a set of given particle trajectories and without additional flow map derivatives. We demonstrate its application for a set of computational fluid dynamic examples, as well as trajectories acquired by Lagrangian methods, and discuss its benefits and limitations. © 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.Citation
Kuhn, A., Engelke, W., Rössl, C., Hadwiger, M., & Theisel, H. (2013). Time Line Cell Tracking for the Approximation of Lagrangian Coherent Structures with Subgrid Accuracy. Computer Graphics Forum, 33(1), 222–234. doi:10.1111/cgf.12269Sponsors
This work was partially funded by the German Federal Ministry of Education and Research under grant number 01LK1213A.Publisher
WileyJournal
Computer Graphics Forumae974a485f413a2113503eed53cd6c53
10.1111/cgf.12269