• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    An adaptive multi-element probabilistic collocation method for statistical EMC/EMI characterization

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Yücel, Abdulkadir C.
    Bagci, Hakan cc
    Michielssen, Eric
    KAUST Department
    Computational Electromagnetics Laboratory
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2013-12
    Permanent link to this record
    http://hdl.handle.net/10754/563131
    
    Metadata
    Show full item record
    Abstract
    An adaptive multi-element probabilistic collocation (ME-PC) method for quantifying uncertainties in electromagnetic compatibility and interference phenomena involving electrically large, multi-scale, and complex platforms is presented. The method permits the efficient and accurate statistical characterization of observables (i.e., quantities of interest such as coupled voltages) that potentially vary rapidly and/or are discontinuous in the random variables (i.e., parameters that characterize uncertainty in a system's geometry, configuration, or excitation). The method achieves its efficiency and accuracy by recursively and adaptively dividing the domain of the random variables into subdomains using as a guide the decay rate of relative error in a polynomial chaos expansion of the observables. While constructing local polynomial expansions on each subdomain, a fast integral-equation-based deterministic field-cable-circuit simulator is used to compute the observable values at the collocation/integration points determined by the adaptive ME-PC scheme. The adaptive ME-PC scheme requires far fewer (computationally costly) deterministic simulations than traditional polynomial chaos collocation and Monte Carlo methods for computing averages, standard deviations, and probability density functions of rapidly varying observables. The efficiency and accuracy of the method are demonstrated via its applications to the statistical characterization of voltages in shielded/unshielded microwave amplifiers and magnetic fields induced on car tire pressure sensors. © 2013 IEEE.
    Sponsors
    This work was supported by the National Science Foundation under Grant DMS 0713771, AFOSR/NSSEFF Program Award FA9550-10-1-0180, Sandia Grant "Development of Calderon Multiplicative Preconditioners with Method of Moments Algorithms," KAUST Grant 399813, ONR BRC Grant "Randomized Algorithms for Reduced Representations," and Center for Uncertainty Quantification in Computational Science and Engineering at KAUST.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    IEEE Transactions on Electromagnetic Compatibility
    DOI
    10.1109/TEMC.2013.2265047
    ae974a485f413a2113503eed53cd6c53
    10.1109/TEMC.2013.2265047
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.