• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Parameter identification of an electrically actuated imperfect microbeam

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ruzziconi, Laura
    Younis, Mohammad I. cc
    Lenci, Stefano
    KAUST Department
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2013-12
    Permanent link to this record
    http://hdl.handle.net/10754/563117
    
    Metadata
    Show full item record
    Abstract
    In this study we consider a microelectromechanical system (MEMS) and focus on extracting analytically the model parameters that describe its non-linear dynamic features accurately. The device consists of a clamped-clamped polysilicon microbeam electrostatically and electrodynamically actuated. The microbeam has imperfections in the geometry, which are related to the microfabrication process, resulting in many unknown and uncertain parameters of the device. The objective of the present paper is to introduce a simple but appropriate model which, despite the inevitable approximations, is able to describe and predict the most relevant aspects of the experimental response in a neighborhood of the first symmetric resonance. The modeling includes the main imperfections in the microstructure. The unknown parameters are settled via parametric identification. The approach is developed in the frequency domain and is based on matching both the frequency values and, remarkably, the frequency response curves, which are considered as the most salient features of the device response. Non-linearities and imperfections considerably complicate the identification process. Via the combined use of linear analysis and non-linear dynamic simulations, a single first symmetric mode reduced-order model is derived. Extensive numerical simulations are performed at increasing values of electrodynamic excitation. Comparison with experimental data shows a satisfactory concurrence of results not only at low electrodynamic voltage, but also at higher ones. This validates the proposed theoretical approach. We highlight its applicability, both in similar case-studies and, more in general, in systems. © 2013 Elsevier Ltd.
    Citation
    Ruzziconi, L., Younis, M. I., & Lenci, S. (2013). Parameter identification of an electrically actuated imperfect microbeam. International Journal of Non-Linear Mechanics, 57, 208–219. doi:10.1016/j.ijnonlinmec.2013.08.003
    Sponsors
    The authors would like to thank Dr. Weili Cui for fabricating the MEMS device and Ahmad M. Bataineh for performing the experimental data. This research has been partially supported by the Italian Ministry of Education, Universities and Research (MIUR) by the PRIN funded program 2010/11, grant N. 2010MBJK5B "Dynamics, stability and control of flexible structures", and partially supported by the National Science Foundation through grant # 0846775.
    Publisher
    Elsevier BV
    Journal
    International Journal of Non-Linear Mechanics
    DOI
    10.1016/j.ijnonlinmec.2013.08.003
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.ijnonlinmec.2013.08.003
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.