Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages
Type
ArticleAuthors
Pan, Jun
El Ballouli, Ala'a
Rollny, Lisa R.
Voznyy, Oleksandr

Burlakov, Victor M.
Goriely, Alain

Sargent, E. H.
Bakr, Osman

KAUST Department
Functional Nanomaterials Lab (FuNL)KAUST Catalysis Center (KCC)
KAUST Solar Center (KSC)
Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
KAUST Grant Number
KUS-11-009-21GRP-CF-2011-21-P/S
Date
2013-10-21Online Publication Date
2013-10-21Print Publication Date
2013-11-26Permanent link to this record
http://hdl.handle.net/10754/563104
Metadata
Show full item recordAbstract
As colloidal quantum dot (CQD) optoelectronic devices continue to improve, interest grows in the scaled-up and automated synthesis of high-quality materials. Unfortunately, all reports of record-performance CQD photovoltaics have been based on small-scale batch syntheses. Here we report a strategy for flow reactor synthesis of PbS CQDs and prove that it leads to solar cells having performance similar to that of comparable batch-synthesized nanoparticles. Specifically, we find that, only when using a dual-temperature-stage flow reactor synthesis reported herein, are the CQDs of sufficient quality to achieve high performance. We use a kinetic model to explain and optimize the nucleation and growth processes in the reactor. Compared to conventional single-stage flow-synthesized CQDs, we achieve superior quality nanocrystals via the optimized dual-stage reactor, with high photoluminescence quantum yield (50%) and narrow full width-half-maximum. The dual-stage flow reactor approach, with its versatility and rapid screening of multiple parameters, combined with its efficient materials utilization, offers an attractive path to automated synthesis of CQDs for photovoltaics and, more broadly, active optoelectronics. © 2013 American Chemical Society.Citation
Pan, J., El-Ballouli, A. O., Rollny, L., Voznyy, O., Burlakov, V. M., Goriely, A., … Bakr, O. M. (2013). Automated Synthesis of Photovoltaic-Quality Colloidal Quantum Dots Using Separate Nucleation and Growth Stages. ACS Nano, 7(11), 10158–10166. doi:10.1021/nn404397dSponsors
This publication is based in part on work supported by awards KUS-11-009-21 and GRP-CF-2011-21-P/S, made by King Abdullah University of Science and Technology (KAUST). V.M.B. acknowledges the support of the Oxford Martin School Fellowship and the Oxford Martin School. A.G. acknowledges the support of the Wolfson/Royal Society Merit Award, a Reintegration Grant under EC Framework VII, and the support of the EPSRC through Grant No. EP/I017070/1. We acknowledge the work of E. Palmiano, R. Wolowiec, and D. Kopilovic. We acknowledge the Canada Foundation for Innovation, project number 19119, the Ontario Research Fund of the Centre for Spectroscopic Investigation of Complex Organic Molecules and Polymers, and the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding.Publisher
American Chemical Society (ACS)Journal
ACS NanoPubMed ID
24131473ae974a485f413a2113503eed53cd6c53
10.1021/nn404397d
Scopus Count
Related articles
- Colloidal quantum dot photovoltaics: a path forward.
- Authors: Kramer IJ, Sargent EH
- Issue date: 2011 Nov 22
- Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
- Authors: Ip AH, Kiani A, Kramer IJ, Voznyy O, Movahed HF, Levina L, Adachi MM, Hoogland S, Sargent EH
- Issue date: 2015 Sep 22
- PbS/Cd₃P₂ quantum heterojunction colloidal quantum dot solar cells.
- Authors: Cao H, Liu Z, Zhu X, Peng J, Hu L, Xu S, Luo M, Ma W, Tang J, Liu H
- Issue date: 2015 Jan 21
- Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications.
- Authors: Ouyang J, Schuurmans C, Zhang Y, Nagelkerke R, Wu X, Kingston D, Wang ZY, Wilkinson D, Li C, Leek DM, Tao Y, Yu K
- Issue date: 2011 Feb
- Depleted-heterojunction colloidal quantum dot solar cells.
- Authors: Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH
- Issue date: 2010 Jun 22