• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Pan, Bing
    Wang, Bo
    Wu, Dafang
    Lubineau, Gilles cc
    KAUST Department
    Composite and Heterogeneous Material Analysis and Simulation Laboratory (COHMAS)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2014-07
    Permanent link to this record
    http://hdl.handle.net/10754/563001
    
    Metadata
    Show full item record
    Abstract
    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost. © 2014 Elsevier Ltd.
    Citation
    Pan, B., Wang, B., Wu, D., & Lubineau, G. (2014). An efficient and accurate 3D displacements tracking strategy for digital volume correlation. Optics and Lasers in Engineering, 58, 126–135. doi:10.1016/j.optlaseng.2014.02.003
    Sponsors
    This work is supported by the National Natural Science Foundation of China (Grant nos. 11172026, 11272032, and 11322220), the Program for New Century Excellent Talents in University (Grant no. NCET-12-0023), the Science Fund of State Key Laboratory of Automotive Safety and Energy (Grant no. KF14032).
    Publisher
    Elsevier BV
    Journal
    Optics and Lasers in Engineering
    DOI
    10.1016/j.optlaseng.2014.02.003
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.optlaseng.2014.02.003
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.