• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Thu, Kyaw
    Yanagi, Hideharu
    Saha, Bidyut Baran
    Ng, K. C.
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2013-10
    Permanent link to this record
    http://hdl.handle.net/10754/562995
    
    Metadata
    Show full item record
    Abstract
    This paper discusses the performance analysis of an advanced adsorption desalination (AD) cycle with an internal heat recovery between the condenser and the evaporator. The AD cycle employs the adsorption-desorption principles to convert sea or brackish water into high-grade potable water with total dissolved solids (TDS) less than 10 ppm (mg/L) utilizing low-temperature heat source. The salient features of the AD cycle are the utilization of low temperature waste heat (typically 55 C to 85 C) with the employment of an environment-friendly silica gel/water pair and the low maintenance as it has no major moving parts other than the pumps and valves. For improved performance of the AD pilot plant, the internal heat recovery scheme between the condenser and evaporator has been implemented with a run-about water circuit between them. The efficacy of the scheme is analyzed in terms of key performance indicators such as the specific daily water production (SDWP) and the performance ratio (PR). Extensive experiments were performed for assorted heat source temperatures ranging from 70 C to 50 C. From the experiments, the SDWP of the AD cycle with the proposed heat recovery scheme is found to be 15 m3 of water per ton of silica gel that is almost twice that of the yield obtained by a conventional AD cycle for the same operation conditions. Another important finding of AD desalination plant is that the advanced AD cycle could still be operational with an inlet heat source temperature of 50 C and yet achieving a SDWP of 4.3 m3 - a feat that never seen by any heat-driven cycles. © 2013 Elsevier Ltd. All rights reserved.
    Citation
    Thu, K., Yanagi, H., Saha, B. B., & Ng, K. C. (2013). Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype. International Journal of Heat and Mass Transfer, 65, 662–669. doi:10.1016/j.ijheatmasstransfer.2013.06.053
    Publisher
    Elsevier BV
    Journal
    International Journal of Heat and Mass Transfer
    DOI
    10.1016/j.ijheatmasstransfer.2013.06.053
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.ijheatmasstransfer.2013.06.053
    Scopus Count
    Collections
    Articles; Biological and Environmental Sciences and Engineering (BESE) Division; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.