• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zhang, Xuming
    Cha, Min Suk cc
    KAUST Department
    Clean Combustion Research Center
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2013-09-23
    Online Publication Date
    2013-09-23
    Print Publication Date
    2013-10-16
    Permanent link to this record
    http://hdl.handle.net/10754/562980
    
    Metadata
    Show full item record
    Abstract
    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. © 2013 IOP Publishing Ltd.
    Citation
    Zhang, X., & Cha, M. S. (2013). Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor. Journal of Physics D: Applied Physics, 46(41), 415205. doi:10.1088/0022-3727/46/41/415205
    Sponsors
    This work was supported by KAUST.
    Publisher
    IOP Publishing
    Journal
    Journal of Physics D: Applied Physics
    DOI
    10.1088/0022-3727/46/41/415205
    ae974a485f413a2113503eed53cd6c53
    10.1088/0022-3727/46/41/415205
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.