Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea
dc.contributor.author | Triantafyllou, George N. | |
dc.contributor.author | Hoteit, Ibrahim | |
dc.contributor.author | Luo, Xiaodong | |
dc.contributor.author | Tsiaras, Kostas P. | |
dc.contributor.author | Petihakis, George | |
dc.date.accessioned | 2015-08-03T11:16:19Z | |
dc.date.available | 2015-08-03T11:16:19Z | |
dc.date.issued | 2013-09 | |
dc.identifier.citation | Triantafyllou, G., Hoteit, I., Luo, X., Tsiaras, K., & Petihakis, G. (2013). Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea. Journal of Marine Systems, 125, 90–100. doi:10.1016/j.jmarsys.2012.12.006 | |
dc.identifier.issn | 09247963 | |
dc.identifier.doi | 10.1016/j.jmarsys.2012.12.006 | |
dc.identifier.uri | http://hdl.handle.net/10754/562939 | |
dc.description.abstract | An application of an ensemble-based robust filter for data assimilation into an ecosystem model of the Cretan Sea is presented and discussed. The ecosystem model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The filtering scheme is based on the Singular Evolutive Interpolated Kalman (SEIK) filter which is implemented with a time-local H∞ filtering strategy to enhance robustness and performances during periods of strong ecosystem variability. Assimilation experiments in the Cretan Sea indicate that robustness can be achieved in the SEIK filter by introducing an adaptive inflation scheme of the modes of the filter error covariance matrix. Twin-experiments are performed to evaluate the performance of the assimilation system and to study the benefits of using robust filtering in an ensemble filtering framework. Pseudo-observations of surface chlorophyll, extracted from a model reference run, were assimilated every two days. Simulation results suggest that the adaptive inflation scheme significantly improves the behavior of the SEIK filter during periods of strong ecosystem variability. © 2012 Elsevier B.V. | |
dc.description.sponsorship | This work was carried out within the framework of the FP7 project MEECE (Marine Ecosystem Evolution in a Changing Environment). Luo acknowledges partial financial support from the Research Council of Norway and industrial partners through the project "Transient well flow modelling and modern estimation techniques for accurate production allocation". We would like to thank the anonymous reviewers for their constructive comments and suggestions. | |
dc.publisher | Elsevier BV | |
dc.subject | Coupled biophysical models | |
dc.subject | Data assimilation | |
dc.subject | Ensemble Kalman filtering | |
dc.subject | H infinity filter | |
dc.subject | Kalman filter | |
dc.title | Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea | |
dc.type | Article | |
dc.contributor.department | Earth Fluid Modeling and Prediction Group | |
dc.contributor.department | Earth Science and Engineering Program | |
dc.contributor.department | Environmental Science and Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.identifier.journal | Journal of Marine Systems | |
dc.contributor.institution | Hellenic Centre for Marine Research, P.O. Box 712 Anavyssos, Attica GR-190 13, Greece | |
dc.contributor.institution | International Research Institute of Stavanger, 5008 Bergen, Norway | |
kaust.person | Hoteit, Ibrahim |
This item appears in the following Collection(s)
-
Articles
-
Environmental Science and Engineering Program
For more information visit: https://bese.kaust.edu.sa/study/Pages/EnSE.aspx -
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Earth Science and Engineering Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/earth-science-and-engineering/Pages/home.aspx