Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated
Type
ArticleAuthors
Cai, JianchaoSun, Shuyu

KAUST Department
Computational Transport Phenomena LabEarth Science and Engineering Program
Environmental Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2013-07-03Online Publication Date
2013-07-03Print Publication Date
2013-08Permanent link to this record
http://hdl.handle.net/10754/562884
Metadata
Show full item recordAbstract
Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs. © 2013 World Scientific Publishing Company.Citation
CAI, J., & SUN, S. (2013). FRACTAL ANALYSIS OF FRACTURE INCREASING SPONTANEOUS IMBIBITION IN POROUS MEDIA WITH GAS-SATURATED. International Journal of Modern Physics C, 24(08), 1350056. doi:10.1142/s0129183113500563Sponsors
This work was partially supported by the National Natural Science Foundation of China (41102080), the Natural Science Foundation of Hubei Province (2011CDA123), the Fundamental Research Funds for the Central Universities (CUG130404 and CUG130103) and Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education (TPR-2011-23), China University of Geosciences (Wuhan), and the KAUST's GRP-AEA Program through the funded project entitled "Simulation of Subsurface Geochemical Transport and Carbon Sequestration."Publisher
World Scientific Pub Co Pte Ltae974a485f413a2113503eed53cd6c53
10.1142/S0129183113500563