The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals
Type
ArticleKAUST Department
Biological and Environmental Science and Engineering (BESE) DivisionBioscience Program
Center for Desert Agriculture
Plant Science
Plant Science Program
Date
2013-07-05Online Publication Date
2013-07-05Print Publication Date
2013-08Permanent link to this record
http://hdl.handle.net/10754/562857
Metadata
Show full item recordAbstract
Oxidative cleavage of carotenoids and peroxidation of lipids lead to apocarotenals and aliphatic aldehydes called alkanals, which react with vitally important compounds, promoting cytotoxicity. Although many enzymes have been reported to deactivate alkanals by converting them into fatty acids, little is known about the mechanisms used to detoxify apocarotenals or the enzymes acting on them. Cyanobacteria and other photosynthetic organisms must cope with both classes of aldehydes. Here we report that the Synechocystis enzyme SynAlh1, encoded by the ORF slr0091, is an aldehyde dehydrogenase that mediates oxidation of both apocarotenals and alkanals into the corresponding acids. Using a crude lysate of SynAlh1-expressing Escherichia coli cells, we show that SynAlh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate for SynAlh1, making involvement in Synechocystis retinoid metabolism unlikely. The transcript level of SynAlh1 is induced by high light and cold treatment, indicating a role in the stress response, and the corresponding gene is a constituent of a stress-related operon. The assumptions regarding the function of SynAlh are further supported by the surprisingly high homology to human and plant aldehyde dehydrogenase that have been assigned to aldehyde detoxification. SynAlh1 is the first aldehyde dehydrogenase that has been shown to form both apocarotenoic and fatty acids. This dual function suggests that its eukaryotic homologs may also be involved in apocarotenal metabolism, a function that has not been considered so far. Aldehyde dehydrogenases play an important role in detoxification of reactive aldehydes. Here, we report on a cyanbacterial enzyme capable in converting two classes of lipid-derived aldehydes, apocaotenals and alkanals. The corresponding gene is a constituent of a stress-related operon, and homology to eukaryotic enzymes points to a yet not considered possibility of their being involved in scavenging of apocarotenals. © 2013 FEBS.Citation
Trautmann, D., Beyer, P., & Al-Babili, S. (2013). The ORFslr0091ofSynechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals. FEBS Journal, 280(15), 3685–3696. doi:10.1111/febs.12361Sponsors
This work was supported by Deutsche Forschungsgemeinschaft grant number AL 892/1-4 and the Deutsche Forschungsgemeinschaft Graduate School (GRK1305). We are indebted to Hansgeorg Ernst (BASF, Ludwigshafen, Germany) for providing synthetic apocarotenoids.Publisher
WileyJournal
FEBS JournalPubMed ID
23734995ae974a485f413a2113503eed53cd6c53
10.1111/febs.12361
Scopus Count
Related articles
- The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi.
- Authors: Díaz-Sánchez V, Estrada AF, Trautmann D, Al-Babili S, Avalos J
- Issue date: 2011 Sep
- Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803.
- Authors: Ruch S, Beyer P, Ernst H, Al-Babili S
- Issue date: 2005 Feb
- Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids.
- Authors: Peng X, Shindo K, Kanoh K, Inomata Y, Choi SK, Misawa N
- Issue date: 2005 Nov
- Deletion of sll1541 in Synechocystis sp. Strain PCC 6803 Allows Formation of a Far-Red-Shifted holo-Proteorhodopsin In Vivo.
- Authors: Chen Q, van der Steen JB, Arents JC, Hartog AF, Ganapathy S, de Grip WJ, Hellingwerf KJ
- Issue date: 2018 May 1
- Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
- Authors: Bains J, Boulanger MJ
- Issue date: 2008 Jun 6