Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors
Type
ArticleKAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionEnvironmental Biotechnology Research Group
Environmental Science and Engineering Program
Water Desalination and Reuse Research Center (WDRC)
KAUST Grant Number
KUS-I1-003-13Date
2013-06-18Online Publication Date
2013-06-18Print Publication Date
2013-11Permanent link to this record
http://hdl.handle.net/10754/562815
Metadata
Show full item recordAbstract
A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m 2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities. © 2013 Springer-Verlag Berlin Heidelberg.Citation
Shehab, N., Li, D., Amy, G. L., Logan, B. E., & Saikaly, P. E. (2013). Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Applied Microbiology and Biotechnology, 97(22), 9885–9895. doi:10.1007/s00253-013-5025-4Sponsors
This work was sponsored by a PhD fellowship, a Global Research Partnership-Collaborative Fellows award (GRP-CF-2011-14-S), KAUST Award KUS-I1-003-13 (Bruce E. Logan) and discretionary investigator funds (Pascal E. Saikaly) at King Abdullah University of Science and Technology (KAUST). Special thanks are extended to Hari Ananda Rao for PCR assistance and Mohammed Alarawi and Dr. Shahjahan Ali of the Bioscience Core Laboratory at KAUST for 454 pyrosequencing.Publisher
Springer NaturePubMed ID
23775270ae974a485f413a2113503eed53cd6c53
10.1007/s00253-013-5025-4
Scopus Count
Related articles
- Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16-37 degrees C.
- Authors: McHugh S, Carton M, Collins G, O'Flaherty V
- Issue date: 2004 Jun 1
- Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles.
- Authors: Ziganshin AM, Schmidt T, Scholwin F, Il'inskaya ON, Harms H, Kleinsteuber S
- Issue date: 2011 Mar
- Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants.
- Authors: De Schamphelaire L, Cabezas A, Marzorati M, Friedrich MW, Boon N, Verstraete W
- Issue date: 2010 Mar
- Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter.
- Authors: Smith AM, Sharma D, Lappin-Scott H, Burton S, Huber DH
- Issue date: 2014 Mar
- Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil.
- Authors: Cabezas A, Pommerenke B, Boon N, Friedrich MW
- Issue date: 2015 Jun