• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Use of beach galleries as an intake for future seawater desalination facilities in Florida and globally similar areas

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Missimer, Thomas M.
    Maliva,, Robert G.
    Dehwah, Abdullah cc
    Phelps, Daniel
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Environmental Science and Engineering Program
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2013-06-17
    Online Publication Date
    2013-06-17
    Print Publication Date
    2014-01-02
    Permanent link to this record
    http://hdl.handle.net/10754/562814
    
    Metadata
    Show full item record
    Abstract
    Desalination of seawater using the reverse osmosis process can be made less costly by the use of subsurface intake systems. Use of conventional open-ocean intakes requires the addition of a number of pretreatment processes to protect the primary RO process. Despite using the best designs possible for the pretreatment, seawater RO membranes tend to biofoul because of the naturally-occurring organic material and small bacteria present in seawater. These materials are not completely removed by the pretreatment system and they pass through the cartridge filters into the membranes, thereby causing frequent and expensive cleaning of the membranes. Quality of the raw water can be greatly improved by the use of subsurface intakes which can substantially reduce the overall treatment cost. There are a number of possible subsurface designs that can be used including conventional vertical wells, horizontal wells, collector wells, beach galleries, and seabed filters. The key selection criteria for the type of subsurface intake most suited and most cost-effective for a site are based on the required volume of raw water and the local geology. The active shorelines of Florida are very well-suited for the development of beach gallery intake systems. These systems are installed beneath the active beach between the high and low tide zones of the beach. Since they are constructed with a depth to the screens between 3 and 5 m, they cannot be observed at surface and persons using the beach would be unaware of their existence. These galleries are simple to construct and they tend not to clog because the active wave action within the intertidal zone provides mechanical energy that continuously cleans the filter face. They also have other advantages, including: the water quality is seawater unaffected by substances present in freshwater aquifers occurring landward of the shoreline, the salinity of the water is generally constant, and there are no impacts on water users located inland from the shoreline. A comprehensive study of the grain size characteristics of Florida beaches has allowed an assessment to be made of the hydraulic conductivities of the Florida beach sands. Hydraulic conductivity values generally range from 1.8 to 24 m/day, which is more than sufficient to allow the design and construction of high-capacity galleries at a reasonable cost. This type of intake is particularly relevant to the northeast Florida shoreline adjacent to an area being considered for development of a large-capacity seawater desalination system. © 2013 © 2013 Balaban Desalination Publications. All rights reserved.
    Sponsors
    Funding for this research was provided by the Water Desalination and Reuse Center, King Abdullah University of Science and Technology and from university faculty discretionary funds.
    Publisher
    Informa UK Limited
    Journal
    Desalination and Water Treatment
    DOI
    10.1080/19443994.2013.808406
    ae974a485f413a2113503eed53cd6c53
    10.1080/19443994.2013.808406
    Scopus Count
    Collections
    Articles; Biological and Environmental Sciences and Engineering (BESE) Division; Environmental Science and Engineering Program; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.