Type
ArticleAuthors
Dai, WeiSchuster, Gerard T.

KAUST Department
Center for Subsurface Imaging and Fluid ModelingEarth Science and Engineering Program
Environmental Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2013-06-03Online Publication Date
2013-06-03Print Publication Date
2013-07Permanent link to this record
http://hdl.handle.net/10754/562802
Metadata
Show full item recordAbstract
A plane-wave least-squares reverse-time migration (LSRTM) is formulated with a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of plane-wave prestack LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry. (3) Plane-wave prestack LSRTM can provide higher-quality images than standard reverse-time migration. Numerical tests on the Marmousi2 model and a marine field data set are performed to illustrate the benefits of plane-wave LSRTM. Empirical results show that LSRTM in the plane-wave domain, compared to standard reversetime migration, produces images efficiently with fewer artifacts and better spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to makes it more robust than conventional least-squares migration in the presence of migration velocity errors. © 2013 Society of Exploration Geophysicists.Citation
Dai, W., & Schuster, G. T. (2013). Plane-wave least-squares reverse-time migration. GEOPHYSICS, 78(4), S165–S177. doi:10.1190/geo2012-0377.1Sponsors
We thank the sponsors of CSIM consortium (http://csim.kaust.edu.sa) for their financial support. We are also grateful to the supercomputing lab at King Abdullah University of Science and Technology (KAUST) for their computer facilities and technical support. The comments from Tamas Nemeth, John Etgen, and three anonymous reviewers have greatly improved the quality of the paper.Publisher
Society of Exploration GeophysicistsJournal
Geophysicsae974a485f413a2113503eed53cd6c53
10.1190/GEO2012-0377.1