• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Global-local optimization of flapping kinematics in hovering flight

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ghommem, Mehdi
    Hajj, M. R.
    Mook, Dean T.
    Stanford, Bret K.
    Béran, Philip S.
    Watson, Layne T.
    KAUST Department
    Numerical Porous Media SRI Center (NumPor)
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2013-06
    Online Publication Date
    2013-06
    Print Publication Date
    2013-06
    Permanent link to this record
    http://hdl.handle.net/10754/562797
    
    Metadata
    Show full item record
    Abstract
    The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.
    Citation
    Ghommem, M., Hajj, M. R., Mook, D. T., Stanford, B. K., Beran, P. S., & Watson, L. T. (2013). Global-Local Optimization of Flapping Kinematics in Hovering Flight. International Journal of Micro Air Vehicles, 5(2), 109–126. doi:10.1260/1756-8293.5.2.109
    Sponsors
    Support of the Air Force Research Laboratory under Contract FA 8650-09-02-3938 is acknowledged. The authors are grateful to Prof. Svanberg who kindly supplied us the optimization package GCMMA, Prof. Nuhait who provided us the results reported in Figure 2, and finally H. Taha of Virginia Tech for his help in discussing the physics of the optimized hovering kinematics.
    Publisher
    SAGE Publications
    Journal
    International Journal of Micro Air Vehicles
    DOI
    10.1260/1756-8293.5.2.109
    ae974a485f413a2113503eed53cd6c53
    10.1260/1756-8293.5.2.109
    Scopus Count
    Collections
    Articles; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.