• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Long, Quan cc
    Scavino, Marco cc
    Tempone, Raul cc
    Wang, Suojin
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Applied Mathematics and Computational Science Program
    Stochastic Numerics Research Group
    KAUST Grant Number
    KUS-CI-016-04
    Date
    2013-06
    Permanent link to this record
    http://hdl.handle.net/10754/562783
    
    Metadata
    Show full item record
    Abstract
    Shannon-type expected information gain can be used to evaluate the relevance of a proposed experiment subjected to uncertainty. The estimation of such gain, however, relies on a double-loop integration. Moreover, its numerical integration in multi-dimensional cases, e.g., when using Monte Carlo sampling methods, is therefore computationally too expensive for realistic physical models, especially for those involving the solution of partial differential equations. In this work, we present a new methodology, based on the Laplace approximation for the integration of the posterior probability density function (pdf), to accelerate the estimation of the expected information gains in the model parameters and predictive quantities of interest. We obtain a closed-form approximation of the inner integral and the corresponding dominant error term in the cases where parameters are determined by the experiment, such that only a single-loop integration is needed to carry out the estimation of the expected information gain. To deal with the issue of dimensionality in a complex problem, we use a sparse quadrature for the integration over the prior pdf. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear numerical examples, including the designs of the scalar parameter in a one-dimensional cubic polynomial function, the design of the same scalar in a modified function with two indistinguishable parameters, the resolution width and measurement time for a blurred single peak spectrum, and the boundary source locations for impedance tomography in a square domain. © 2013 Elsevier B.V.
    Citation
    Long, Q., Scavino, M., Tempone, R., & Wang, S. (2013). Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations. Computer Methods in Applied Mechanics and Engineering, 259, 24–39. doi:10.1016/j.cma.2013.02.017
    Sponsors
    We thank the referees for their helpful comments and suggestions that led to an improved version of this paper. We are also thankful for support from the Academic Excellency Alliance UT Austin-KAUST project "Predictability and uncertainty quantification for models of porous media" and the Institute of Applied Mathematics and Computational Sciences at TAMU. Part of this work was carried out while M. Scavino and S. Wang were Visiting Professors at KAUST. S. Wang's research was also partially supported by Award Number KUS-CI-016-04, made by King Abdullah University of Science and Technology (KAUST). M. Scavino and R. Tempone are members of the KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering.
    Publisher
    Elsevier BV
    Journal
    Computer Methods in Applied Mechanics and Engineering
    DOI
    10.1016/j.cma.2013.02.017
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.cma.2013.02.017
    Scopus Count
    Collections
    Articles; Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.